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Opening Remarks

Interact!
No theory!*
Partial repetition of talks at various Summer and Winter schools!

No claims to completeness!

*Well, almost none. Which is actually a pity.
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Overview

Lecture 1: Introduction to TLS; BEAST and CRIME
attacks

Lecture 2: Padding oracles, Lucky 13, and more
Lecture 3: RCy4 attacks

Lecture 4: tbd
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Introducing TLS

SSL = Secure Sockets Layer.
Developed by Netscape in mid 1990s.

SSLv2 now deprecated; SSLv3 still widely supported.

TLS =Transport Layer Security.
IETF-standardised version of SSL.

TLS 1.0 = SSLv3 with minor tweaks, RFC 2246 (1999).

TLS 1.1 =TLS 1.0 + tweaks, RFC 4346 (2006).
TLS 1.2 =TLS 1.1 + more tweaks, RFC 5246 (2008).

TLS1.37
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Introducing TLS

Originally for secure e-commerce, now used much more widely.
Retail customer access to online banking facilities.
User access to gmail, facebook, Yahoo.
Mobile applications, including banking apps.
Payment infrastructures.
User-to-cloud.

Post Snowden: back-end operations for google, yahoo, ...

TLS has become the de facto secure protocol of choice.

Used by hundreds of millions of people and devices every day.
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Highly Simplified View of TLS

Client Server

ai-ﬁi
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TLS Protocol Architecture

Record Protocol

TCP
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The TLS Ecosystem (1/3)

* Servers

* Including managed service providers (CloudFlare, Akamai)
* C(Clients

» Ofallshapes andsizes

» Certification service providers

* Ofallshapes, sizes and levels of security

e Software vendors
* From Google down to one-man open-source operations
* OpenSSL somewhere in-between

 Hardware vendors
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The TLS Ecosystem (2/3)

* TLS versions:

e SSL3.0,TLS1.0,TLS 1.2, TLS1.2

* Many servers even still support SSL 2.0
* 200+ ciphersuites

 https://www.thesprawl.org/research/tls-and-ssl-cipher-suites

* Some very common, e.g.
TLS_RSA_WITH_AES_128_CBC_SHA256
* Some highly esoteric, e.qg.

TLS_KRB5 WITH 3DES EDE_CBC_MD5
«  Some offering no security:

TLS_NULL_WITH_NULL_NULL'!
e TLS extensions

* Too numerous to mention.

« DTLS
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The TLS Ecosystem (3/3)

* IETFTLS Working Group
* Also IETF UTA Working Group (UTA =Using TLS in Applications)
* And CFRG (Crypto Forum Research Group)

* Growing community of researchers
* Blackhat or Crypto?
* Attacks or security proofs?
* Handshake Protocol, Record Protocol or both?

* Full protocol including session resumption, renegotiation, ciphersuite
negotiation?

* Provable security or formal methods or something else?
* Game-based, UC or constructive cryptography?

* TheTLS ecosystem has become very complex and vibrant.
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The TLS Ecosystem (4/3) (bonus slide)

n8L OpenSSL Fact @0penSSLFact - 24 Jul 2013
/*The aim of right-shifting md_size is so that
the compiler doesn't figure out that it can

remove div_spoiler...which | hope is beyond

n, it.*/

&) OpenSSL Fact retweeted
JP Aumasson @veorq - 3 Feb 2013

OpenSSL wikibook, nice initiative en.m.wikibooks.org/wiki/OpenSSL

Opené§

@0OpenSS

12 7

- OpenSSL Fact @0penSSLFact - 31 Jan 2013
#else
if (0)

n$S

#endif

==

ves/841-D...

that RSA -
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A Newsworthy Protocol

TLS has been in the news.....
BEAST (2011), CRIME (2012), Lucky 13, RC4 attacks (both 2013).
Renegotiation attack (2009), triple Handshake attack (2014).
Poor quality of implementations (particularly in certificate handling).
*Why Eve and Mallory Love Android” (2012)
"The most dangerous code in the world” (2012)
Apple goto fail (2013)
GNnUTLS certificate processing bug (2013)
Truncation and cookie cutter attacks (2013, 2014)
OpenSSL CCS bug (2014)

Frankencerts (2014)

Mostly tech press, with limited crossover to mainstream media.
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A Newsworthy Protocol

TLS has really been in the news.....
... Heartbleed bug.

What is it about Heartbleed that caught the
wider media’s imagination?

* Pressure built and the dam finally broke?

* Severity of the threat (leakage of private
information, inc. server private keys)?

* Widespread use of OpenSSL.
* Agood logo?
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TLS Protocol Architecture

Record Protocol

TCP
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TLS Record Protocol

TLS Record Protocol provides:
Data origin authentication, integrity using a MAC.
Confidentiality using a symmetric encryption algorithm.
Anti-replay using sequence numbers protected by the MAC.
Optional compression.

Fragmentation of application layer messages.
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TLS Record Protocol: MAC-Encode-Encrypt

SQN || HDR Payload
' o '
|
|
Payload MAC tag Padding
' Enavt '
HDR Ciphertext

BVAeS  HMAC-MD5, HMAC-SHA1, HMAC-SHA256
DERGhBlN  CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

Padding “00" or “01 01”7 or “02 02 02" or .... or “FF FF....FF”
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Operation of TLS Record Protocol

« Datafrom layer above is received and partitioned into fragments (max size 2%
bytes).

* Optional data compression.
. Default option is no compression.

* (Calculate MAC on sequence number, header fields, and data, and append MAC
to data.

* Pad (if needed by encryption mode), then encrypt.
* Prepend 5-byte header, containing:

. Content type (1 byte, indicating content of record, e.g. handshake message,
application message, etc),
. SSL/TLS version (2 bytes),
. Length of fragment (2 bytes).
* SubmittoTCP.
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Operation of TLS Record Protocol

In-bound processing steps reverses these steps:

1. Receive message, of length specified in HDR.
2. Decrypt.

3. Remove padding.

4. Check MAC.

5. (Decompress payload.)

6. Pass payload to upper layer

(note: no defragmentation; TLS provides a stream of fragments to the
application).

Errors can arise from any of decryption, padding removal or MAC checking
steps.

All of these are fatal errors in TLS.
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AEAD and TLS Record Protocol

Dedicated Authenticated Encryption with Associated Data (AEAD)
algorithms are supported in TLS 1.2, in addition to MEE.

* Single algorithm providing both confidentiality and integrity/data
origin (authentication)

* Need not conform to MEE template.

* General AEAD interface specified in RFC 5116.
* AES-GCM specified in RFC 5288.

* AES-CCM specified in RFC 6655,
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AEAD and TLS Record Protocol

42.6% of the Alexa top 200k websites support TLS 1.2.

(Up from 17% one year ago and 5% two years ago.)

(source: ssl pulse, Sept. 2014)

TLS 1.2 support in browsers:
@ Chrome: since release 30.
A\ . .
e}; Firefox: since release 28.

g IE: since IE11.

(source: wikipedia, Nov. 2013)

But stronger, modern AE designs are not yet in widespread use....
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Current AEAD Usage in TLS

I
Snapshot from ICSI Certificate Notary Project (Sept. 2014): |

B TLS_RSA_WITH_RC4_128_SHA ]

I TLS_ECDHE_RSA_WITH_AES_128_CBC_S...

W TLS_RSA_WITH_RC4_128_MD5

B TLS_RSA_WITH_AES_256_CBC_SHA

B TLS_ECDHE_ECDSA_WITH_AES_128_GC... [(Emmm—

B TLS_RSA_WITH_AES_128_CBC_SHA 16.3%
, B TLS_ECDHE_RSA_WITH_AES_128_GCM_S... |(Cmmm—

B TLS_ECDHE_RSA_WITH_RC4_128_SHA
6.8% ! [l other
- I TLS_ECDHE_ECDSA_WITH_AES_128_CBC...
B TLS_RSA_WITH_NULL_SHA
B TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
B TLS_ECDHE_RSA_WITH_AES_256_CBC_S...
B TLS_DHE_RSA_WITH_AES_128_CBC_SHA
I TLS_ECDHE_RSA_WITH_AES_128_CBC_S...
Il TLS_ECDHE_RSA_WITH_AES_256_CBC_S...
Bl TLS_ECDHE_ECDSA_WITH_CHACHA20_P... K— 1.6%
I TLS_DHE_RSA_WITH_AES_256_CBC_SHA
I TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
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TLS Record Protocol Sequence Numbers

Sequence number is 64 bits in size and is incremented for each new message.

Sequence number not transmitted as part of message.

Each end of connection maintains its own view of the current value of the sequence
number.

TLS is reliant on TCP to deliver messages in order.

Wrong sequence number leads to failure of MAC verification

A fatal error leading to TLS connection termination.

Creates stateful encryption scheme.

Preventing replay, insertion, reordering attacks,...
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TLS Protocol Architecture

Record Protocol

TCP
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TLS Handshake Protocol

TLS consumes symmetric keys:
MAC and encryption algorithms in Record Protocol.

Different keys in each direction.
TLS also needs initialization vectors (IVs) for some encryption algorithms.

These keys and IVs are established by the Handshake Protocol and subsequent key
derivation.

The TLS Handshake Protocol is itself a complex protocol with many options...
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TLS Handshake Protocol Security Goals

Entity authentication of participating parties.
Participants are called client and server.
Reflects typical usage in e-commerce.
Server nearly always authenticated, client more rarely.

Appropriate for most e-commerce applications.

Establishment of a fresh, shared secret.
Shared secret used to derive further keys.

For confidentiality and authentication/integrity in SSL Record Protocol.
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TLS Handshake Protocol Security Goals

Secure negotiation of all cryptographic parameters.
SSL/TLS version number.
Choice of encryption and hash algorithms.
Choice of authentication and key establishment methods.

To prevent version rollback and ciphersuite downgrade attacks.
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TLS Handshake Protocol — Key Establishment

TLS supports several different key establishment mechanismes.

Method used is negotiated during the Handshake Protocol itself.

Client sends list of ciphersuites it supports in ClientHello; server selects one and tells client in
ServerHello.

e.qg. TLS_RSA_WITH_AES_256_CBC_SHA256 or TLS_KRBs_WITH_3DES_EDE_CBC_MDg

Very common choice is RSA encryption.
Client chooses pre master secret, encrypts using public RSA key of server, sends to server.
RSA encryption based on PKCS#1v1.5 padding method.

Source of Bleichenbacher attack and much sadness.

(TP
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TLS Handshake Protocol — Key Establishment

Canalsocreate pre master secret from:

Static Diffie-Hellman
Server certificate contains DH parameters (group, generator g) and static DH value g~.
Client chooses y, computes ¢ and sends to server.

pre_master_secret = g¥.

Ephemeral Diffie-Hellman
Server and Client exchange fresh Diffie-Hellman components in group chosen by server.

Signed (usually only by server) to provide authentication.

Anonymous Diffie-Hellman
Each side sends Diffie-Hellman values in group chosen by server, but no authentication of these values.

Vulnerable to man-in-middle attacks.
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TLS Key Derivation (in TLS 1.2)

pre master secret

v

TLS 1.2
PRE

nonces master+secret
| YV

TLS 1.2
PRF

v

key block
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TLS Key Derivation

Keys used by MAC and encryption algorithms in the Record
Protocol are derived from pre master secret:

Derivemaster secretfrompre master secret usingTLS
PRF.

PRF used can be negotiated during the Handshake Protocol (TLS1.2).
Default PRF for TLS1.2 is built by iterating HMAC-SHA256 in a specified way.

Previous versions use an ad hoc construction based on MDg and SHA1.

Derive key blockfrom master secret and client/server
nonces exchanged during Handshake Protocol.

Again using the TLS PRF in TLSza.2.

Splitup key block into MAC keys, encryption keys and IVs for use
in Record Protocol as needed.
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TLS Handshake Protocol — Entity Authentication

TLS supports several different entity authentication
mechanisms for clients and servers.

Method used is negotiated along with key exchange method
during the Handshake Protocol itself.

Specified in ciphersuites.

Most common server authentication method is based on RSA.

Ability of serverto decrypt pre master secret usingits private
key and then generate correct PRF value in finished message
using key derived from pre master secret authenticates server
to client.
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Authentication Based on RSA Encryption (simplified)

Client Server
ClientNonce

ServerNonce, ServerCert

<

l.Check ServerCert

2.Extract PK from ServerCert
3.Select random pms

4 .Compute Enc..(pms)

EncCpg (pms )

>

l.Decrypt and extract pms
2.Derive ms from pms and
nonces
3.Compute ServerFin =
PRF (ms,transcript)

ServerFin

Check correctness
sTobESexsveuE om Uploaded By: anonymous




TLS Handshake Protocol — Entity Authentication

Less common authentication methods:

» Ability of server to derive key from server’s static (private) DH
value (in server certificate) and client’s ephemeral (public) DH
value.

 ECDSA, DSA or RSA signatures on nonces (and other fields, e.g.
Diffie-Hellman values).

* Pre-shared key.

* Shared password.
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TLS Handshake Protocol Overview

M1: C 2> S: ClientHello

M2:S 2 C: ServerHello, [Certificate, ServerKeyExchange,
CertificateRequest,] ServerHelloDone

M3: C 2> S:[Certificate, ] ClientKeyExchange,
[CertificateVerify, ] , ClientFinished

M4: S = C: , ServerFinished

[1 denotes optional/situation-dependent field.

(ChangeCipherSpec messages are technically not part of Handshake
Protocol.)
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TLS Handshake Protocol — Additional Features

* TLS Handshake Protocol supports ciphersuite renegotiation and session
resumption.

* Ciphersuite renegotiation allows re-keying and change of ciphersuite during a

session.
. E.g., to force strong client-side authentication before access to a particular resource on the
server is allowed.
. Initiated by client sending ClientHello orserver sending ServerHelloRequest over
existing Record Protocol.
. Followed by full run of Handshake Protocol.

* Session resumption allows authentication and shared secrets to be reused across
multiple connections in a single session.

. E.g., allows fetching next web-page from same website without re-doing full, expensive
Handshake Protocol.
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TLS Handshake Protocol — Session Resumption

Client and server run lightweight version of Handshake Protocol:

1. C=>S:ClientHello

(quoting existing SessionID, new ClientNonce and list of ciphersuites).
2. S>(C ServerHello
(repeating SessionID, new ServerNonce and selected ciphersuite),

ChangeCipherSpec, Finished.

C-> S:ChangeCipherSpec, Finished.

W

 New key blockisderived by each side after receipt of ChangeCipherSpec messages.
* New keys and IVs are derived from newly-exchanged nonces and existingmaster secret.
* The session resumption exchange is protected by existing Record Protocol ciphersuite.

* No public key operations are involved in session resumption.
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TLS Sessions and Connections

Session concept:
. Sessions are created by the Handshake Protocol.

. Session state defined by session ID and set of cryptographic
parameters (encryption and hash algorithm, master secret,
certificates) negotiated in Handshake Protocol.

. Each session can carry multiple sequential connections.

Connection concept:

. Keys for multiple sequential connections are derived from a single
master secret created during one run of the full Handshake
Protocol.

. Session resumption Handshake Protocol runs exchange new nonces.

. These nonces are combined with existingmaster secretto

derive key Dblock and keys for each new connection.
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TLS Key Derivation — Sessions and Connections

pre master secret

TLS 1.2 .. Doneonce

PRF per session
nonces master secret .
l

vV Done once

TLS 1.2 per connection
PRI for a given

‘l' session.
key block
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TLS Protocol Architecture

Record Protocol

TCP
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OtherTLS Protocols

Alert protocol.
Management of SSL/TLS connections and sessions, error messages.
Fatal errors and warnings.

Defined actions to ensure clean session termination by both client and server.

Change cipher spec protocol.
Technically not part of Handshake Protocol.

Used to indicate that entity is changing to recently agreed ciphersuite.

Both protocols run over Record Protocol (so are peers of Handshake Protocol).
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TLS Handshake Complexity

* Recall simplistic view of TLS:
* Handshake Protocol followed by Record Protocol.

* Reality is much more complex:
* Initial Handshake Protocol over Record Protocol with no keys.
* Change Cipher Spec. Protocol message, switch on new keys.

*  Completion of Handshake via exchange of Finished messages, now running over
keyed Record Protocol.

*  Followed by arbitrary sequences of Session Resumption and Renegotiation runs.

*  Most of this activity is hidden from applications.

* This complexity has turned out to have serious negative consequences:
* Ray-Rex-Dispensa Renegotiation Attack (2009).
e Triple Handshake Attack (2014).

* Considerable barrier to formal security analysis.
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SSL and TLS

TLS 1.0 = SSLv3.0 with minor differences, including:
* TLS signalled by version number 3.1.
* Use of HMAC for MAC algorithm in TLS 1.o0.

* Different method for deriving keying material

* TLS 1.0 uses PRF based on HMAC with MD5 and SHA-1 operating in
combination.

* Additional alert codes.
* More client certificate types.

* Variable length padding.

* Can be used to hide lengths of short messages and so limit traffic analysis.
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Evolution of TLS

TLS 1.2 (RFC 4346, 2006) obsoletes TLS 1.0 (RFC 2246).

* Uses explicit Vs instead of IV chaining to prevent attacks based on
predictable IVs (see later).

* Attempts to protect against padding oracle attacks (see later).
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Evolution of TLS

TLS 1.2 (RFC 5246) published in 2008 obsoletes TLS 1.1 (RFC 4346).

* Removal of dependence on MD-5 and SHA-1 hash algorithms for
PRFs.

* Now negotiable in Handshake Protocol, but specific PRF based on
HMAC-SHA256 as standard.

* Support for AEAD modes.

* Removed support for some cipher suites.

Adoption of TLS 1.1 and 1.2 has grown rapidly over the last 18
months.

* Largelyinresponse to the spate of recent attacks.

TLS 1.3 now under development in IETF TLS Working Group.
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TLS Extensions

Many extensions to TLS exist.

Allows extended capabilities and security features.

Examples:
* Renegotiation Indicator Extension (RIE), RFC 5746.
* Application layer protocol negotiation (ALPN), draft RFC.
* Authorization Extension, RFC 5878.

* Server Name Indication, Maximum Fragment Length Negotiation,
Truncated HMAC, etc, RFC 6066.
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DTLS

DTLS is effectively “TLS over UDP”
* DTLS1.0aligns withTLS 1.1, and DTLS 1.2 with TLS 1.2.
* UDP provides unreliable transport, so DTLS must be error tolerant.

* Necessitating changes to Handshake Protocol.

* To manage fragmentation of long messages over multiple UDP
packets.

* And changes to the Record Protocol.

* Allow out-of-order delivery of messages by using explicit sequence
numbers and sliding windows.

« Do not treat decryption errors as fatal.

* Anddo not send alerts when decryption fails.
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BEAST and CRIME Attacks




BEAST

IV chaining in SSLv3 and TLS 1.0 CBC mode leads to a chosen-
plaintext distinguishing attack against TLS.

* First observed for CBC mode in general by Rogaway in 199s.

* Application to TLS noted by Dai and Moeller in 2004.

Extended to theoretical plaintext recovery attack by Bard in
2004/2006.

Turned into a practical plaintext recovery attack on HTTP cookies
by Duong and Rizzo in 2011 — the BEAST.

* BEAST = Browser Exploit Against SSL/TLS

* 16-year demonstration that attacks do get better with time.
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CBC Mode Reminder

P., P Initialisation Vector (IV):
______ v ———___, °*Defines C, for processing first block.
: P D : eChained IVs are common in
i €k ek i applications, and in SSL 3.0 and TLS
. | | . 1.0 in particular.
iy C.. || C. ) e TLS 1.1 and 1.2 require to be
random.
- C C L, CBC mode needs some form of
! -1 ! ! padding if plaintext lengths are not
! | | ! multiple of block length.
| di dy |
Lo . L ___-_» *More on padding later.
Pi1 P
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Attacking Chained IVs

Suppose attacker wishes to distinguish encryptions of single
blocks P_, P..

Attacker makes LoR query for messagesP_, P..

Attacker receives ciphertext C = C, for message P, where some
known, previous block C_ was used as the IV.
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Attacking Chained IVs

C, will be used as the IV for the next encrpytion.

Attacker now makes LoR query on block P, ® C_,® C..

Attacker receives single block ciphertext C,.

Pb PO@CO@C1
— — 9
ek ek
| |
CO — C1 [ C2
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Attacking Chained IVs

CO [ C1 [ C2

* If P, =P, theninputs to block cipher are the same in both
encryptions.

* Hence, if P =P, then C =C..
* Otherwise, ifP,=P_ then C_#C..

* SolookingatC, and C, gives us a test to distinguish
encryptions of P_and P_.
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Attacking Chained IVs

Attack extends easily to multi-block messages.

So IV chaining for CBC mode is broken in theory.
How can we turn this into a practical attack on TLS?

- We want plaintext recovery rather than a distinguishing attack.

- We need to realise the chosen plaintext requirement.
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The BEAST — Part 1

P D
€k €k
| |
CO [ C1 — C2

* Assume bytes P, P,... P, are known, try to recover P,..

* UseP,P,..P, asfirst 15 bytes of P".

* Iterate over 256 possible valuesin P’ .

« P.=P.ifandonlyifC =C,.

* Soaverage of 128 trials (each involving one chosen plaintext) to extract P,
when remaining bytes in block are known.
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The BEAST — Part 2

)
0P1

Now assume attacker can control position of unknown bytes in stream with respect to
CBC block boundaries (chosen boundary privilege).

Repeat previous single-byte recovery attack with sliding bytes.
Green: initially known bytes.
Red: unknown (target) bytes.
STUDENTSHUBcrecovered bytes. Uploaded By: anonymous



The BEAST — Part 3

Cookie
for
remote
site

—

TLS tunnel

Browser
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BEAST — Key Features

* BEAST JavaScript loaded ahead of time into client browser
from compromised or malicious wesbite.
* Provides chosen-plaintext capability.

* Attacktargetis HTTP secure cookie.

* JavaScript uses HTTP padding to control positions of unknown
bytes (chosen boundary privilege).
* Difficult to get fine control over byte/block positions.

* Need to be able to inject chosen plaintext block at the very start of
Record Protocol messages.

* JavaScript also needs to communicate with MITM attacker.

* Summary: it's complicated, but it can be made to work.
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BEAST — Impact

The BEAST was a major headache for TLS vendors.

Perceived to be a realistic attack.
Most client implementations were “stuck” at TLS 1.0.

Best solution: switch to using TLS 1.1 or 1.2.
Uses random IVs, so attack prevented.
But needs server-side support too.

ForTLS 1.0, various hacks were done:

Use 1/n-1 record splitting in client.
Now implemented in most but not all (?) browsers.

Send o-length dummy record ahead of each real record.
Breaks some implementations.

Or switch to using RC4?
As recommended by many expert commentators.
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BEAST — Lessons

A theoretical vulnerability pointed out in 1995 became a practical
attack in 2011.

Attacks really do get better (worse!) with time.
Practitioners really should listen to (some) theoreticians.
And, in this case, they did: TLS 1.1 and 1.2 use random |Vs.
Problem was that no-one was using these versions in 2011.

Tools from the wider security field were needed to make the
attacks headline news.

Man-in-the-browser via Javascript.

Fair game given the huge range of ways in which TLS get used.
Maybe those tools can be used elsewhere?
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CRIME

Exploits use of optional compression in TLS.

Theoretical attack known since 2004, made practical by Duong
and Rizzo in 2012.

ldea:
Plaintext length leaks through ciphertext length.
But plaintext length leaks amount of compression.

And amount of compression leaks a tiny amount about plaintext.
Recovery of HTTP session cookies (and more).
Mitigated by switching off TLS compression.

Application layer compression still problematic.
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CRIME - Lessons

A theoretical vulnerability pointed out in 2004 became a practical
attack in 2012.
Attacks really do get better with time.

Tools developed for BEAST were reused in committing CRIME.
And maybe they can be used yet elsewhere?
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Real World Cryptography 2015
London, UK, 7-9 January 2015
http://www.realworldcrypto.com/rwc2015

#realworldcrypto
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Elena Andreeva (K.U. Leuven)
Dan Bogdanov (Cybernetica)
Sasha Boldyreva (Georgia Tech)
Claudia Diaz (K.U. Leuven)
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lan Goldberg (U. Waterloo)
Arvind Mani (LinkedIn)
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Elisabeth Oswald (U. Bristol)
Scott Renfro (Facebook)
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TLS Record Protocol: MAC-Encode-Encrypt

SQN || HDR Payload
 MAC '
| L
| ,/’— ~“\\
Payload MACtag | | Padding | |
N J

HDR

Ciphertext

BVAeS  HMAC-MD5, HMAC-SHA1, HMAC-SHA256

DERGBEN  CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

Padding “00" or “01 01”7 or “02 02 02" or .... or “FF FF....FF”
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TLS Record Protocol Padding

Padding in TLS 1.0 and up has a particular format:
— Always add at least 1 byte of padding.

— If t bytes are needed, then add t copies of the byte
representation of t-1.

— So possible padding patterns in TLS are:
00;

01 01;
02 02 02;
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TLS Record Protocol Padding

e Variable length padding is permitted in all versions of TLS.

e Up to 256 bytes of padding in total:
FF FF.... FF

e FromTLS 1.0:

Lengths longer than necessary might be desirable to frustrate
attacks on a protocol based on analysis of the lengths of
exchanged messages.
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Handling Padding During Decryption

e TLS 1.0 error alert:

decryption_failed: ATLSCiphertext decrypted in an invalid way:
either it wasn 't an even multiple of the block length or its
padding values, when checked, weren’t correct. This message is
always fatal.

e Suggests padding format should be checked, but without
specifying exactly what checks should be done.
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Exploiting Weak Padding Checks — Moeller Attack

TLS decryption sequence:

CBC mode decrypt, remove padding, check MAC.

[Mo2]: failure to check padding format leads to a simple attack
recovering the last byte of plaintext from any block.

Assumptions:

Attacker has a special TLS ciphertext containing a complete block of
padding.

* So MAC ends on block boundary for this ciphertext.

Padding is removed by inspecting last byte only.
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Moeller Attack

Blocks from
special ciphertext

Byte value
is “OF” here
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Moeller Attack
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Moeller Attack

Decryption succeeds if and only if:
C,,® dC*) = (??7,72,....77, oF)
* Hence attacker can recover last byte of d,(C*) with probability 1/256.

* This enables recovery of last byte of original plaintext P* corresponding to
C*in the CBC stream, by solving system of eqgns:

C,,® d(C*) = (22,22,....22,0F)
C*, @ d(C¥) = P*
where C*__is the block preceding C* in the stream.

* Hence, inTLS 1.1 and up:

Each uint8 in the padding data vector MUST be filled with the padding
length value. The receiver MUST check this padding....
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Full Padding Check

* Henceforth, we suppose that TLS does a full padding check.

* Sodecryption checks that bytes at the end of the plaintext have one of the
following formats:

00;
01, 01;

02, 02, 02;

FF. FF,.oo....... FF;

and outputs an error if none of these formats is found.
* NB Other “sanity” checks may also be needed during decryption.
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Padding Oracles

* Vaudenay [Vo2] proposed the concept of a padding oracle.

Padding
Oracle

Valid/Invalid
>

* Vaudenay showed that, for CBC mode and for certain padding
schemes, a padding oracle can be used to build a decryption
oracle!
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Padding Oracle Attack for TLS Padding

— - o - -
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Padding Oracle Attack for TLS Padding

o Cts C
| dy dy
Lo e A
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Padding Oracle Attack for TLS Padding

* Anaverage of 128 trials are needed to extract the last byte of
each plaintext block.

* Can extend to the entire block, with an average of 128 trials
per byte.

* (Can extend to the entire ciphertext.

Because attacker can place any target block as last block of ciphertext.
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TLS Padding Oracles In Practice?

* InTLS, an error message during decryption can arise from
either a failure of the padding check or a MAC failure.

* Vaudenay’s padding oracle attack will produce an error of
one type or the other.

* Padding failure indicates incorrect padding.

* MAC failure indicates correct padding.

* Ifthese errors are distinguishable, then a padding oracle
attack should be possible.
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TLS Padding Oracles In Practice?

Good news (for the attacker):
* The error messages arising in TLS 1.0 are different:

* Dbad record mac

. decryption failed

Bad news:

* Butthe error messages are encrypted, so cannot be seen by
the attacker.

* And an error of either type is fatal, leading to immediate
termination of the TLS session.
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TLS Padding Oracles In Practice?

Canvel et al. [CHVVo03]:

* A MAC failure error message will appear on the network later than
a padding failure error message.

*  Because an implementation would only bother to check the MAC if
the padding is good.

* Sotiming the appearance of error messages might give us the
required padding oracle.

* Evenif the error messages are encrypted!

*  Amplify the timing difference by using long messages.

* Butthe errors are fatal, so it seems the attacker can still only learn
one byte of plaintext, and then with probability only 1/256.
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OpenSSL and Padding Oracles

Canvel et al. [CHVVo3]:

* The attacker can still decrypt reliably if a fixed plaintext is repeated in a
fixed location across many TLS sessions.

. e.g. password in login protocol or an HTTP session cookie.
. A multi-session attack.
. Modern viewpoint: use BEAST-style malware to generate the required

encryptions.

* The OpenSSL implementation had a detectable timing difference.
. Roughly 2ms difference for long messages (close to 2% byte maximum).

. Enabling recovery of TLS-protected Outlook passwords in about 3 hours.
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Multi-session Version
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Padding Oracle Attack Countermeasures?

* RedesignTLS:
* Pad-MAC-Encrypt or Pad-Encrypt-MAC.

* Tooinvasive, did not happen.

e Switchto RC4?

* Oradd a fix to ensure uniform errors:
* Check the MAC anyway, even if the padding is bad.

* If attacker can't tell difference between MAC and pad errors, then maybe
TLS's MEE construction is secure?

* Fixincluded inTLS 1.1 and 1.2 specifications.
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Padding Oracles Post [CHVV 03]

* Regarded as a solved problem for SSL/TLS.

* Steady trickle of other papers showing padding oracle attacks
in other systems, e.q.

* ISO standard for CBC-mode encryption [PYo4, YPMox].
e Trailer oracle attack on IPsec [DPo7, DP10]

« POET attack on ASP.NET [DR2ao0].

* XML encryption [JS11].

* OpenSSL implementation of DTLS [APa2].
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Breaking DTLS in OpenSSL

[AP12]: Can we apply padding oracle ideas to DTLS?

But surely all DTLS implementations would have learned the
lessons from old TLS attacks?

* DTLS1.0is based ontheTLS 1.1 specification.

*  Sowe should not expect a timing-based side channel
to exist...
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Breaking DTLS in OpenSSL

* The OpenSSL implementations of DTLS prior to versions
0.9.8s/1.0.0f did not check the MAC if the padding check fails.

* Hence the timing difference observed in [CHVV03] should still
be present!

* Moreover, DTLS does not treat MAC/padding errors as fatal, so
a single session attack might be possible!
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Breaking DTLS in OpenSSL

Bad news: no error messages to time.

*  Not amajor hurdle:

Heartbeat — >
packet

<— Heartbeat
response

Attack packet takes longer to process if padding is good.

So measure time difference between sending attack packet + heartbeat and receiving
heartbeat response.

This serves as a proxy for timing error messages.

STﬁlTS—HUB.com

Uploaded By: anonymous



Breaking DTLS in OpenSSL

Good news: errors in DTLS are not fatal.

* Actually very good news: allows amplification of timing difference using packet trains.

Heartbeat — >
packet

<— Heartbeat
response

*  With care, the timing difference arising from the attack packets can be made cumulative!

* Repeat over many trains and use statistical techniques to detect timing difference.

Pp)

\d
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Breaking DTLS in OpenSSL: Experimental Results

HMAC-SHA1 + CBC-AES, 10 packets per train, 1456 bytes per packet:
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Breaking DTLS in OpenSSL: Experimental Results

* Example for HMAC-SHA1 + CBC-AES
* 192 byte packets
* 2 packets pertrain

*  1otrains per byte value

 Statistical processing:
*  Gettimings for each set of 10 trains; remove outliers
*  Keep minimum time for each byte value tried.

*  Select as correct byte the one that maximizes the resulting time.

* Success probabilities:
. Per byte: 0.996

. Per block: 0.94
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Observations

* One may speculate that the OpenSSL developers did not
protect DTLS implementation against timing attacks because

of the lack of error messages in DTLS.

. Nothing to time implies no attack?

* DTLS turned out to be substantially easier to attack than TLS.

. Because of ability to amplify timing differences using packet trains.

. This is a consequence of the choice of transport protocol: UDP instead of
TCP.

. Also enabled us to sharpen our tools for what came next...
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Padding Oracle Countermeasures, Revisited

From the TLS 1.1 and 1.2 specifications:

...Implementations MUST ensure that record processing time is
essentially the same whether or not the padding is correct.

In general, the best way to do this is to compute the MAC even if the
padding is incorrect, and only then reject the packet.

Compute the MAC on what though?
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TLS Record Protocol: MAC-Encode-Encrypt

SQN || HDR Payload

HDR Ciphertext

Problem is: how to parse plaintext as payload, padding and MAC fields
when the padding is not one of the expected patterns 0o, 01 01,... ?
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Ensuring Uniform Errors

From the TLS 1.1 and 1.2 specifications:

For instance, if the pad appears to be incorrect, the implementation
might assume a zero-length pad and then compute the MAC.

* This approach was adopted in many implementations,
including OpenSSL, NSS (Chrome, Firefox), BouncyCastle,
OpenlDK, ...

* Other approaches possible (GnuTLS).
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Ensuring Uniform Errors

... This leaves a small timing channel, since MAC performance

depends to some extent on the size of the data fragment, but it is
not believed to be large enough to be exploitable, due to the large
block size of existing MACs and the small size of the timing signal.
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Ensuring Uniform Errors

... This leaves a small timing channel, since MAC performance

depends to some extent on the size of the data fragment, but it is
not believed to be large enough to be exploitable, due to the large
block size of existing MACs and the small size of the timing signal.
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Enter Lucky 13 [AP13]

Distinguishing attacks and full plaintext recovery attacks against TLS-
CBC implementations following the advice in the TLS 1.1 and 1.2 specs.

. And variant attacks against those that do not.

Applies to all versions of SSL/TLS.
. SSLv3.o, TLS 1.0, 1.1, 1.2.
. And DTLS too!

Demonstrated in the lab against OpenSSL and GnuTLS.

Full details at www.isg.rhul.ac.uk/tls/Lucky13.html
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Lucky 13: Main Idea

* TLS decryption removes padding and MAC tag to extract PAYLOAD.

* HMAC computed on SQON || HDR || PAYLOAD.

 HMAC computation involves adding =g bytes of padding and iteration of hash
compression function, e.g. MD5, SHA-1, SHA-256.

* Running time of HMAC depends on L, the exact byte length of SQN || HDR ||

PAYLOAD:
. L < 55 bytes: 4 compression function calls;
. 56 < L <119: 5 compression function calls;
. 120 < L <183: 6 compression function calls;
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Lucky 13: Distinguishing Attack

C =Enc (M) M is either R?®7|| oo or R32 || FF256

e Adversary intercepts C, mauls, and forwards on to recipient.

* Time taken to respond with error message will indicate
whether M = R?%7 || oo or M = R32 || FF25°,

e Ciphertext-only distinguishing attack.
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Lucky 13 Distinguishing Attack — Choose
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Lucky 13 Distinguishing Attack — Maul
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Lucky 13 Distinguishing Attack — Inject

1-byte valid padding
20-byte MAC
267-byte message

256-byte valid padding
20-byte MAC
12-byte message
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Lucky 13 Distinguishing Attack — Decrypt
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Lucky 13 Distinguishing Attack — Decrypt

Slow MAC
w y verification

Y

280 bytes

Fast MAC
\ Y, verification
Y

25 bytes

Timing difference: 4 SHA-1 compression function evaluations

A
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Lucky 13 — Experimental Results for Distinguishing Attack

0.00006 £ 7T T T T T T T T

0.00005 -

0.00004 -

0.00003 -

Probability

0.00002 -

0.00001 |-

1.50x10% 1.51 x10° 1.52 x10° 1.53 x 10 1.54 x 10 1.55 x10° 1.56 x 10 1.57 x 10°
Hardware Cycles (Calculated by Attacker)
OpenSSLva.o.1 on server running at 1.87Ghz.

100 Mbit LAN.
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Lucky 13 — Success Probability for Distinguishing Attack

Number of Sessions Success Probability

1 0.756
4 0.858
16 0.951
64 0.992
128 1

Q
STTS—HUB.com
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Lucky 13 — Plaintext Recovery

My experience:

* Practitioners tend to dismiss distinguishing attacks as being
artificial or theoretical.

* Despite them having a history of leading to stronger attacks.

* They tend to pay more attention when you show them plaintext.

* Preferably their own password in a live demonstration.

* So we tried to find a way to extend our distinguishing attack to a
plaintext recovery attack.
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Lucky 13 — Plaintext Recovery

dy dy dy dy
D o

D D gV 4V
P

(HMAC-SHA-1 + AES-CBCQ)
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Case 1: "01 01" (or longer valid pad)

XOR 2-byte A here
and submit for decryption
dy dy dy dy
> (D va) D oD

13 +16 +16 + 10 = 55 bytes

4 SHA-1 compression function
evaluations

STTS—HUB.com

20 bytes “0101”
(or longer

valid pad)
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Case 2: "00”

XOR 2-byte A here
and submit for decryption

y

dy dy d d
(1) an ) )

56 bytes 20 bytes “00”

5 SHA-1 compression function

evaluations
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Case 3: Bad padding

XOR 2-byte A here
and submit for decryption

A 4

dy dy d d
A :C) :<> AL

N AL /
~ N \

57 bytes 20 bytes zerc;-length
pad

5 SHA-1 compression function

evaluations
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Lucky 13 — Plaintext Recovery

The injected ciphertext causes bad padding and/or a bad MAC.

This leads to a TLS error message, which the attacker times.

There is a timing difference between “01 01" case and the other 2 cases.
A single SHA-1 compression function evaluation.
Roughly 1000 clock cycles, circa 1pus on typical processor.
Measurable difference on same host, LAN, or a few hops away.

(Compare with original padding oracle attack: 2ms.)

Detecting the "01 01" case allows last 2 plaintext bytes in the target block C, to
be recovered.

Using the standard CBC algebra: P, ® (.....A,4;,) = (....0101).

Attack then extends to all bytes as in a standard padding oracle attack.
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Lucky 13 — Plaintext Recovery

We need 21 attempts to try all 2-byte A values.

And we need around 27 trials for each A value to reliably distinguish the
different events.

(Actual noise level depends on experimental set-up.)

Each trial kills the TLS session.
Hence the headline attack cost is 223 sessions, all encrypting the same plaintext.

Seems rather theoretical?
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Lucky 13 — Improvements (Attacks Get Better!)

If 1-out-of-2 last plaintext bytes known, then we only need 22 attempts per
byte.

If the plaintext is base64 encoded, then we only need 2° attempts per byte.

And 27 trials per attempt to de-noise, for a total of 213.

BEAST-style attack targeting HTTP cookies.
Malicious client-side Javascript makes HTTP GET requests.
TLS sessions are automatically generated and HTTP cookies attached.
GET requests are “padded” so that 1-out-of-2 condition always holds.

Cost of attack is 213 GET requests per byte of cookie.

Now a practical attack!
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Lucky 13 — Experimental Results

1292X1O6 j ° — * ° [ ] () .. .... [ ] ° - [ )
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0 50 100 150 200 250
Ais

Byte 14 of plaintext set to o1; byte 15 set to FF.
Modify A in position 15.
OpenSSLvi.o.1 on server running at 1.87Ghz, 100 Mbit LAN.

Median times (noise not shown).
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Lucky 13 — Countermeasures

We really need constant-time decryption for TLS-CBC.

Add dummy hash compression function computations when padding is good to
ensure total is the same as when padding is bad.

Add dummy padding checks to ensure number of iterations done is
independent of padding length and/or correctness of padding.

Watch out for length sanity checks too.

Need to ensure there’s enough space for some plaintext after removing padding and
MAC, but without leaking any information about amount of padding removed.
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Performance of Basic Countermeasures

0.00006 F T T T T T T T T T T T T F
; /1 S ] 0.00006 F 1
0.00005 - / ‘ . r
i 1 0.00005 F .
By 000004 . Iy f
- i ] 000004 F ]
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7 0.00003 [ ] . [
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g i ] 8 000003 |
-8 [ ] —8 r
0.00002 | ] i
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H 7 ] 5 0.00002
0.00001 - 1 0.00001 - ]
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Hardware Cycles (Calculated by Attacker) Hardware Cycles (Calculated by Attacker)
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Constant Time Decryption for MEE

Better, but still not perfect.

. Distinguishing attack still possible.

* Proper constant-time, constant-memory access implementation is really
needed.

. Challenging to test padding correctness and do sanity checking without
branching on secret data.

* See Adam Langley’s blogpost at:

https://www.imperialviolet.org/2013/02/04/luckythirteen.html
for full details on how Lucky 13 was fixed in OpenSSL and NSS.

* Not all implementations were fixed so thoroughly...
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Lucky 13 — Impact

OpenSSL patched in versions 1.0.1d, 1.0.0k and 0.9.8y, released 05/02/2013.
NSS (Firefox, Chrome) patched in version 3.14.3, released 15/02/2013.
Apple: patched in OS X v10.8.5 (i0OS version tbd).

Opera patched in version 12.13, released 30/01/2013

Oracle released a special critical patch update of JavaSE, 19/02/2013.
BouncyCastle patched in version 1.48, 10/02/2013

Also GnuTLS, PolarSSL, CyaSSL, MatrixSSL.

Microsoft "determined that the issue had been adequately addressed in
previous modifications to their TLS and DTLS implementation”.

(Full details at: www.isg.rhul.ac.uk/tls/lucky13.html)
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Other Lucky 13 Countermeasures?

Introduce random delays during decryption.

Surprisingly ineffective, analysis in [AP13].

Redesign TLS:
Pad-MAC-Encrypt or Pad-Encrypt-MAC?
Pad-Encrypt-MAC has been developed by IETF as a TLS extension for TLS 1.1 and higher.
Will take months/years to deploy.

SwitchtoTLS 1.2
Has support for AES-GCM and AES-CCM.

But was not widely supported by browsers or servers at the time Lucky 13 was announced.

Switch to RC4
As recommended by many commentators (again!).

More soon...
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Lucky 13 — Lessons

TLS’s MAC-Encode-Encrypt construction is hard to implement
securely and hard to prove positive security results about.

Long history of attacks and fixes.

Each fix was the “easiest option at the time”.

Now reached point where a 5oo line patch to OpenSSL was needed to fully
eliminate the Lucky 13 attack.

Better to use an EtM construction from day one, or eat the cost of
switching at the first sign of trouble.

A conservative approach seems merited for such an important protocol.

At the time TLS was first designed, EtM versus MtE debate was not so clear

cut.
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Yet Another Attack... Short MACs




Are We There Yet?

Implementations of TLS in CBC mode should by now have:

Explicit, random IVs
— To prevent Dai-Rogaway-Moeller/BEAST

Proper padding checks

- To prevent Moeller attack.

Uniform behaviour under padding and MAC failures
—  To prevent padding oracle and Lucky 13 attacks.
- ldeally, constant-time, constant memory access code.

Variable length padding.

- Todisquise true plaintext lengths.
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Short MAC Attack Against TLS [PRS11]

C = Enc (M) M is either “Yes” or “No”

e Adversary intercepts C, flips a few bits, and forwards it on to recipient.
e How recipient responds will indicate whether M= “Yes” or “No” .
e Adistinguishing attack.

e The attack works when MAC size < block size and when sender uses
variable length padding.
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MAC length t = 80, block length n =128

C, = (C, @ 00104

/ — COIC’l

STTS—HUB.com

No 134 1316
—— ——
€x €x
I I
C, C,
Yes 123 1216
—— ——
€x €x
I I
Cl CZ

Byte 13 is hex
for 19

Byte 12 is hex
for 18
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C,/ = C,® oo*10%

/ — COIC’l

STTS—HUB.com

Yes 123 1216
—— ——
€x €x
I I
Cl CZ
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ex X\ Decrypts
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\

7

e

\ /

,/=C, @ 00*?10% Yes [22|022 | [\ 12%
= —® Aie/ MAC w.iII
0 ~1 e, e)( not verify,
| 7T\ decryption

c,, C, B /C2 \l\ fails
/
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Where Does the Attack Apply?

ForTLS 1.2:
Block length MAC length
n=64 for3DES =128 for HMAC-MDg
n =128 for AES =160 for HMAC-SHA1

=256 for HMAC-SHA256

/

\/O/I: ¢, B
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Where Does the Attack Apply?

ForTLS 1.2 with truncated MAC extension (RFC 6066):

Block length MAC length
n=64 for3DES =80 forTruncated HMAC-MDg
n =128 for AES =80 forTruncated HMAC-SHA1

=80 forTruncated HMAC-SHA256

Attack applies for AES!

S, D
€x €x
| |
CO B Cl B CZ
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Attack Consequences

* This does not yield an attack against TLS, but only because no
short MAC algorithms are currently supported in
implementations.

* The attackis "only” a distinguishing attack.

. Does not seem to extend to plaintext recovery.

* The attack also presents a barrier to obtaining proofs of
security for TLS MEE construction.

. Attack exploits variable length padding to break INT-CTXT security, leading
to IND-CCA attack.
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AE Security for MEE in TLS

Theorem ([PRS11], informal statement)

Suppose E is a block cipher with block size n that is sprp-secure.
Suppose MAC has tag size # and is prf-secure.

Suppose that for all messages M queried by the adversary:

M|+t = n.

Then MEE with CBC mode encryption, random IVs, TLS padding, and uniform
errors is (LH)AE secure.

— P — P — P
€x €x €x
I I I
C, ¢, C, C,
rS-HUBcom Uptoaded By: anonymous




(Tag) Size Matters!

Practical
att.acks & 5
exist .. .
| |
G, C, C,
Securein
the (LH)AE ' 9 9
model . :K eEK
| | |
CO Cl (_'2 - C3
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SECURITY

Truly scary SSL 3.0 vuln to be revealed soon:
sources

So worrying, no one's breathing a word until patch is out

By Darren Pauli, 14 Oct 2014 % Follow - 2,546 followers

2 3 Gird your loins, sysadmins: The Register has learned that news of yet another major
security vulnerability - this time in SSL 3.0 - is probably imminent.

RELATED Maintainers have kept quiet about the vulnerability in the lead-up to a patch release
STORIES expected in in the late European evening, or not far from high noon Pacific Time.

OpenVPN open
STtprelduts-BddB.co

Details of the problem are under wraps due to the severity thE‘g a’d’éaeé?/:b%‘ inymous



POODLE = BEAST + Moeller Attack

Recall (from previous lecture):

[Mo2]: failure to check padding format leads to a simple attack recovering the last byte
of plaintext from any target block.

Blocks from :
special ciphertext Target ciphertext

/\ block from stream

Ctz Ces c*
I l I

dy dk

D D

Decryption succeeds
if and only if byte
value is “OF” here
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POODLE = BEAST + Moeller Attack

POODLE (https://www.openssl.org/~bodo/ss|-poodle.pdf)

In SSLv3, encryption uses random padding; only the last byte is
used to remove padding.

Repeat:

1. Use Javascript in the browser to pad HTTP GET requests (as in
BEAST), ensuring that target cookie byte is placed as last byte of
block and that the MAC field aligns on a block boundary.

2. Do Moeller’s attack with that block to recover the cookie byte with
probability 1/256.

Until (all cookie bytes are recovered).
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Patching against POODLE?

A patch that does not work: upgrade decryption to do full
padding check and Lucky 13 protection.

* But sender may not use correct padding format (it's not required in
SSLv3).

* Sothis would not be deployable unless ALL clients and servers
upgraded simultaneously.

* Should not use RCy4 either (see next section).

* No ciphersuites left.

(You just witnessed the death of SSLv3!)
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SSLv3z Usage

But no-one is using SSLv3, right?

100%
80%

60% Source: SSL pulse,

40% 15t Oct. 2014
20% I I
o Ll

SSL SSL TLS TLS TLS
v2.0 v3.0 vi.0 vit vi.2

Rich Salz (TLS mailing list, 15/20/14): Akamai sees < 1% SSLv3 traffic

But the attack is made worse because of version downgrade attack:
* Active MITM attacker can always force client and server to downgrade to SSLv3.

* Because the SSL/TLS version negotiation process is not stateful and not
cryptographically protected.
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TLS Record Protocol: RC4-128

[SanfiEoR|  payioa

Payload MACtag  ( )

HDR Ciphertext

IVAEY  HMAC-MD5, HMAC-SHA1, HMAC-SHA256

DEpll  CBC-AES128, CBC-AES256, CBC-3DES{RC4-128
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TLS Record Protocol: RC4-128

STTS—HUB.com Uploaded By: anonymous



Use of RC4 in TLS

In the face of the BEAST and Lucky 13 attacks on CBC-based ciphersuites in TLS,

switching to RC4 was a recommended mitigation.
® @auaus
RC4 is also fast when AES hardware not available

Use of RC4 in the wild:

|ICSI Certificate Notary

-
I I

] Jan. 2013 survey of 16 billion TLS connections:

] 1 Approx. 50% protected via RC4 ciphersuites

\ _/

Problem: RC4 is known to have statistical weaknesses.
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Single-byte Biases in the RC4 Keystream

[Mantin-Shamir 2001]:
Pr[Z; = 0] = 5
[Mironov 2002]:

Described distribution of Z; (bias away from 0, sine-like distribution)

[Maitra-Paul-Sen Gupta 2011]: for 3 < r < 255

Pr[Z, = 0] = 535 + 55  0.242811 < ¢, < 1.337057

[Sen Gupta-Maitra-Paul-Sarkar 2011]:
Pr[Z, =256 — I] > 2& + 25% [ = keylength
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What's Going On Here?

Why were people still using RC4 in half of all TLS connections when we already
knew it was a weak stream cipher?

"The biases are only in the first handful of bytes and they don‘t encrypt anything
interesting in TLS”.

"The biases are not exploitable in any meaningful scenario”.
"RC4 is fast.”
"I’'m worried about BEAST on CBC mode. Experts say ‘use RC4"”
"Google uses it, so it must be OK for my site”.

"There’s no demonstrated attack — show me the plaintext!”

A
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Complete Keystream Byte Distributions

Approach in [ABPPS13]:

Based on the output from 245 random independent 128-bit RC4 keys, estimate the
keystream byte distributions for the first 256 bytes

uuuuuu

8 9 112 128 144 160 176 192 208 224 240 255 o 16 32 9 112 128 144 160 176 192 208 224 240 255
Byte value (0..2551 Byte value (0..255]

Revealed many new biases in the RC4 keystream.

(Some of these were independently discovered by Isobe et al.)
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Keystream Distribution at
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Keystream Distribution at

Position 2
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Keystream Distribution at

Position 3
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Keystream Distribution at
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Keystream Distribution at
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Keystream Distribution at

Position 6
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Keystream Distribution at
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Keystream Distribution at
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Keystream Distribution at
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Keystream Distribution at
Position 10
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Keystream Distribution at
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Keystream Distribution at
Position 12
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Keystream Distribution at
Position 13
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Keystream Distribution at
Position 14
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Keystream Distribution at
Position 15
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Keystream Distribution at
Position 16
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Keystream Distribution at
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Keystream Distribution at
Position 18
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Keystream Distribution at
Position 19
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Keystream Distribution at
Position 20
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Keystream Distribution at
Position 21
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Keystream Distribution at
Position 22
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Keystream Distribution at
Position 23
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Keystream Distribution at
Position 24
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Keystream Distribution at

Position 25
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Keystream Distribution at
Position 26
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Keystream Distribution at

Position 27
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Keystream Distribution at

Position 28
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Keystream Distribution at
Position 29
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Keystream Distribution at
Position 30
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Keystream Distribution at
Position 31
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Keystream Distribution at
Position 32
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All the Biases
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Plaintext Recovery for TLS-RC4

* Pretty picture, but where’s the plaintext?

* Usingthe biased keystream byte distributions, we can
construct a plaintext recovery attack against TLS.

* The attack requires the same plaintext to be encrypted under
many different keys.

. Use Javascript in browser as mechanism, cookies as target.

. Reusing the BEAST mechanism once more.
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Plaintext Recovery Using Keystream Biases

Encryptions of fixed plaintext Plaintext candidate

under different keys byte p
r 4
- mmmrmm om0 — [
c. T p &

combine with known distribution
. T [ p ®

: |/

Likelihood of p being
correct plaintext byte
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Details of Statistical Analysis

Let ¢ be the n-vector of ciphertext bytes in position r.

Let 9 = (9yp: 901»---» Q) De the vector of keystream byte probabilities in
position r.

Bayes theorem:
Pr[P=p | C=c] = Pr[C=c | P=p].Pr[P=p]/Pr[C=c]
= Pr[Z=c ® p | P=p].Pr[P=p]/Pr[C=c].
Assume Pr[P=p] is constant; Pr[C=c] is independent of the choice of p.

To maximise Pr[P=p | C=c] over all choices of p, we simply need to
maximise:

Noo C]201_.. qj?ﬁ‘

00

Pr[Z=c ® p | P=p]

where n, is the number of occurrences of byte value x in Z=c ® p (which
equals the number of occurrences of x ® p in ¢).
ST@I
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Success Probability 22° Sessions
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Success Probability 22* Sessions
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Success Probability 222 Sessions
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Success Probability 223 Sessions
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Success Probability 224 Sessions
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Success Probability 225 Sessions
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Success Probability 22° Sessions
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Success Probability 227 Sessions
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Success Probability 228 Sessions
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Success Probability 229 Sessions
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Success Probability 23° Sessions
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Success Probability 23* Sessions
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Success Probability 232 Sessions
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Limitations of Attack

Requires 22% ~ 232 TLS connections for reliable recovery.

Attacker has to force TLS session renegotiation/resumption.

No known mechanism from within Javascript.

Only the first 220 bytes of application data can be targeted.

Initial 36 bytes used to encrypt last message of Handshake protocol.

In reality, first 220 bytes of application data usually contain uninteresting HTTP
headers.
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A Second Attack

Fluhrer and McGrew identified
biases for consecutive
keystream bytes.

Persistent throughout keystream.

Based on these, we construct an
attack which:

Can target any plaintext byte
positions;

Does not require session
renegotiation [ resumption.

STUDENTS-HUB.com

Byte pair

Condition on 1

Probability

(0,0)
(0,0)
(0,1)
(i + 1,255)
(255, + 1)
(255, + 2)
(255, 0)
(255, 1)
(255, 2)
(129, 129)
(255, 255)
(0,i+1)

i=1
i # 1,255
i#0,1
i # 254
i# 1,254
i # 0,253,254,
i =254
i = 255
i=0,1
i=2
i # 254
i # 0,255

27%(14+277)
2715(1+27%)
2-16(1 +285)
2-16(1+275)
271%(1427%)
2715(1+27%)
2-16(1 +278)
2715(1+27%)
271%(1+27%)
2715(1+27%)
2-16(1 — 2-8)
27191 -27%)

Uploaded By: anonymous




A Second Attack

Align plaintext with repeating Fluhrer-McGrew biases by padding.

RC4 Keystream [ N P I e
Plaintext copies  [INIRImEIN EINERNNN  EREE
TS Ciphertexts  [NIINCIN  ENNGTNNN NG

Exploit overlapping nature of plaintext byte pairs to obtain approximate
likelihood for plaintext candidates.

: -
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Success Probability
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Countermeasures

Possible countermeasures against the attacks
Discard initial keystream bytes.
Fragment initial records at the application layer.
Add random length padding to records.

Limit lifetime of cookies or number of times cookies can be sent.

Stop using RC4 InTLS.
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Vendor Responses to RC4 Attacks

Opera: implemented a combination of countermeasures.

Google: focused on implementing TLS 1.2 and AES-GCM in Chrome, now
deployed.

Microsoft: RCy4 is disabled by default for TLS in Windows 8.1 and latest
Windows server code.

Development of standards for alternative stream ciphersin TLS
underway in IETF.

Salsa2o0/ChaCha2o.

Full details at www.isg.rhul.ac.uk/tls
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Summary of RC4 inTLS

Plaintext recovery attacks against RC4 in TLS are feasible although not truly
practical.

228 ~ 232 sessions for reliable recovery of initial bytes.

233 ~ 234 encryptions for reliable recovery of 16 bytes anywhere in plaintext.

The attacks illustrate that RC4 in TLS provides a security level far below the
strength suggested by the key size of 128 bits.

Furthermore, attacks only becomes better with time...
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Current Status — CBC-mode

Most CBC-mode implementations have been patched against
BEAST and Lucky 13, but reputation damaged by long series of
attacks.

Large ecosystem and trickiness of proper patch means that not every
implementation is patched to the same degree.

Relative performance also an issue (AES-CBC + HMAC quite slow).
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Current Status — RC4

Snapshot from ICSI Certificate Notary Project:

AR

6.8%

STTS—HUB.com

B TLS_RSA_ WITH_RC4_128_SHA

I TLS_ECDHE_RSA_WITH_AES_128_CBC_S...

TLS_RSA_WITH_RC4_128_MDS5  —

B TLS_RSA_WITH_AES_256_CBC_SHA

B TLS_ECDHE_ECDSA_WITH_AES_128_GC...

B TLS_RSA_WITH_AES_128_CBC_SHA

B TLS_ECDHE_RSA_WITH_AES_128_GCM_S... >35%

B TLS_ECDHE_RSA_WITH_RC4_128_SHA ?

I other
B TLS_ECDHE_ECDSA_WITH_AES_128_CBC...
B TLS_RSA_WITH_NULL_SHA

Bl TLS_ECDHE_ECDSA_WITH_RC4_128_SHA |« mmm—

B TLS_ECDHE_RSA_WITH_AES_256_CBC_S...
B TLS_DHE_RSA_WITH_AES_128_CBC_SHA

B TLS_ECDHE_RSA_WITH_AES_128_CBC_S...
B TLS_ECDHE_RSA_WITH_AES_256_CBC_S...
B TLS_ECDHE_ECDSA_WITH_CHACHA20_P...
B TLS_DHE_RSA_WITH_AES_256_CBC_SHA

B TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
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Current Status — RC4

RC4 should be dead, but is not.
Usage has dropped from 50% to 35% in about 1 year.

More work seems to needed to kill it off completely.

AES-GCM and AES-CCM are only available for TLS 1.2.

But TLS 1.2 is now supported in all major browsers.
And by 42.6% of top 200k websites.
So why is only 15.3% of traffic using AES-GCM?

Long tail of old servers and old clients.

Peculiarities of TLS ciphersuite negotiation and version fallback.
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Current Status — Null Encryption!

Snapshot from ICSI Certificate Notary Project:

AR

B TLS_RSA_WITH_RC4_128_SHA

Bl TLS_ECDHE_RSA_WITH_AES_128_CBC_S...
W TLS_RSA_WITH_RC4_128_MD5

B TLS_RSA_WITH_AES_256_CBC_SHA

B TLS_ECDHE_ECDSA_WITH_AES_128_GC...
Il TLS_RSA_WITH_AES_128_CBC_SHA

M TLS_ECDHE_RSA_WITH_AES_128_GCM_S...
I TLS_ECDHE_RSA_WITH_RC4_128_SHA

I other

Il TLS_ECDHE_ECDSA_WITH_AES_128_CBC...
B TLS_RSA_WITH_NULL_SHA e 5 (0]
I TLS_ECDHE_ECDSA_WITH_RC4_128_SHA

M TLS_ECDHE_RSA_WITH_AES_256_CBC_S...

Bl TLS_DHE_RSA_WITH_AES_128_CBC_SHA

I TLS_ECDHE_RSA_WITH_AES_128_CBC_S...

B TLS_ECDHE_RSA_WITH_AES_256_CBC_S...

Il TLS_ECDHE_ECDSA_WITH_CHACHAZ20_P...

B TLS_DHE_RSA_WITH_AES_256_CBC_SHA

Q I TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
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Current Status — AES-GCM

AES-based ciphersuites are generally slow without AES-NI instruction.

AES-GCM is tricky to implement securely.
Main issue is avoiding leakage of hash key via side-channel attack.

Also need side-channel resistant implementation of AES.

AES-GCM is relatively fast
Especially with AES-NI and PCLMULQDAQ instructions (Intel and AMD).
2.53 to 1.03 cycles per byte, depending on processor.
http://2013.diac.cr.yp.to/slides/queron.pdf
Roughly twice as fast as AES-CBC + HMAC-SHA-*
But OCB would be even faster!
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Current Developments

Fresh algorithms are under active consideration in IETF TLS WG.
Important for environments where AES is not available in hardware.
Momentum behind ChaCha2o stream cipher plus Poly1305 MAC.

See https://tools.ietf.org/html/draft-irtf-cfrg-chacha2o-poly1305-01
Combination is a good AEAD scheme assuming ChaCha2o is ideal [P14].

But additional review needed of ChaChazo.

Reform of MEE to EtM to make CBC-mode easier to implement
securely.

RFC 7366 (Gutmann) recently published .

Deployment via TLS extension, unclear how widely adopted it will become.
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Current Developments

TLS 1.3 is now under active development in TLS WG.
Reducing latency in Handshake.

Simplification of key exchange and authentication methods in
Handshake.

Server name/identity hiding/handshake encryption for improved
privacy (?)

Reform of symmetric algorithms.

Active review of drafts needed by users and cryptographers.
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Closing Remarks

Once a bad cryptographic choice is out there in implementations,
it's very hard to undo.

Old versions of TLS hang around for a long time.
There is no TLS product recall programme!

Slow uptake of TLS 1.1, 1.2.

TLS has come under sustained pressure from attacks.

BEAST, Lucky 13 and RC4 attacks are providing incentives to move to
TLS 1.2.

Attacks are “semi-practical” but we ignore such attacks at our peril.

Good vendor response to Lucky 13, less so to RCy4 attack.
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Closing Remarks

Good algorithm design is hard.
But so is good protocol design.

Attacks are usually obvious in retrospect.

But so is a lot of crypto theory!
Finding attacks is high-risk, high-reward.

Keep in mind the value of attacks on paper versus attacks in
practice.

Implemented attacks are needed to convince practitioners.

But an on-paper attack is often the harbinger of a practical attack.
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Closing Remarks

There are many possible research directions in this area.
* Wedidn't even talk about TLS Handshake security!
* OrHeartbleed, or the CCS attack on OpenSSL, or Frankencerts...

TLS has provided a particularly rich seam of attacks.

* Maybe more attacks still to find?

If you enjoyed these lecture, then you might also enjoy...
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Real World Cryptography 2015
London, UK, 7-9 January 2015
http://www.realworldcrypto.com/rwc2015

#realworldcrypto

Speakers to include:

Elena Andreeva (K.U. Leuven)
Dan Bogdanov (Cybernetica)
Sasha Boldyreva (Georgia Tech)
Claudia Diaz (K.U. Leuven)
Roger Dingledine (Tor project)
lan Goldberg (U. Waterloo)
Arvind Mani (LinkedIn)

Luther Martin (Voltage Security)
Elisabeth Oswald (U. Bristol)
Scott Renfro (Facebook)

Ahmad Sadeghi (TU Darmstadt)
Elaine Shi (UMD)

Brian Sniffen (Akamai)

Nick Sullivan (CloudFlare)
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