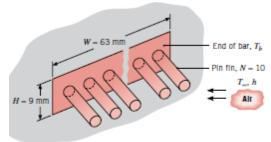
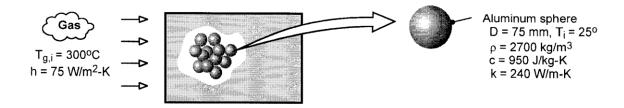
Birzeit University Mechanical & Mechatronics Engineering Department ENMC 4411 Thermal Fluid Engineering Homework # 6

Instructor: Dr. Afif Akel

- **16.4** The steady-state temperature distribution in a one dimensional wall of thermal conductivity 50 and thickness 50 mm is observed to be $T(^{\circ}C) = a + bx^{2}$, where $a = 200^{\circ}C$, $b = -2000^{\circ}C/m^{2}$, and x is in meters.
- (a) What is the volumetric energy generation rate in the wall?
- **(b)** Determine the heat fluxes at the two wall faces. In what manner are these heat fluxes related to the volumetric energy generation rate?
- **16.10** The walls of a refrigerator are typically constructed by sandwiching a layer of insulation between sheet metal panels. Consider a wall made from fiberglass insulation of thermal conductivity ki=0.046 and thickness Li=50 mm and steel panels, each of thermal conductivity kp=60 and thickness Lp=3 mm. If the wall separates refrigerated air at T_{∞} , $i=4^{\circ}$ C from ambient air at T_{∞} , $o=25^{\circ}$ C, what is the heat transfer rate per unit surface area? Coefficients associated with natural convection at the inner and outer surfaces may be approximated as hi=ho=5.
- **16.15** The rear window of an automobile is defogged by passing warm air over its inner surface. If the warm air is at T_{∞} , $i = 40^{\circ}$ C and the corresponding convection coefficient is hi = 30, what are the inner and outer surface temperatures of 4-mm-thick window glass, if the outside ambient air temperature is T_{∞} , $o = -10^{\circ}$ C and the associated convection coefficient is ho = 65?
- **16.23** A stainless steel (k = 14) tube used to transport a chilled pharmaceutical has an inner diameter of 36 mm and a wall thickness of 2 mm. The pharmaceutical and ambient air are at temperatures of 6°C and 23°C, respectively, while the corresponding inner and outer convection coefficients are 400 and 6, respectively.
- (a) What is the heat transfer rate per unit tube length?
- (b) What is the heat transfer rate per unit length if a 10-mmthick layer of calcium silicate insulation (kins = 0.050) is applied to the outer surface of the tube?
- **16.50** Consider the use of rectangular, straight, stainless steel (k= 15) fins on a plane wall whose temperature is 100°C. The adjoining fluid is at 20°C, and the associated convection coefficient is The fin is 6 mm thick and 20 mm long.
- (a) Calculate the fin efficiency, effectiveness, and heat rate per unit length.
- (b) Compare the foregoing results with those for a fin fabricated from pure copper (k = 400).

16.57 The end of a rectangular bar surrounded by insulation is maintained at 100° C and is exposed to ambient air as shown in the schematic. A linear array of pin fins (N = 10) is affixed to the end surface to enhance the heat transfer rate from the bar. The pin fins (k = 65) are 3 mm in diameter and 12 mm long. The ambient air temperature is 25°C, and the convection coefficient over the bar end surface and pin fins is 10 W/m 2 # K.




Figura P16.57

Determine the percentage increase in the heat transfer rate associated with attaching the pin fins to the bar end.

16.65 Energy storage systems commonly involve a *packed bed* of solid spheres, through which a hot gas flows if the system is being charged or a cold gas flows if it is being discharged (Fig. P16.65). In a charging process, heat transfer from the hot gas increases thermal energy stored within the colder spheres; during discharge, the stored energy decreases as heat transfer occurs from the warmer spheres to the cooler gas.

Consider a packed bed of 75-mm-diameter aluminum spheres ($\rho = 2700 \text{ kg/m3}$, c = 950, k = 240) and a charging process for which gas enters the storage unit at a temperature of Tg, i = 300°C. If the initial temperature of the spheres is Ti = 25°C and the convection coefficient is h = 75 how long does it take a sphere near the inlet of the system to accumulate 90% of the maximum possible energy?

What is the corresponding temperature at the center of the sphere? Is there any advantage to using copper instead of aluminum?

