CHAPTER

METHODS

Objectives
To define methods with formal parameters (§6.2).

To invoke methods with actual parameters (i.e., arguments) (§6.2).

To define methods with a return value (§6.3).

To define methods without a return value and distinguish the differ-
ences between void methods and value-returning methods (§6.4).

To pass arguments by value (§6.5).

B To develop reusable code that is modular, easy to read, easy to debug,
and easy to maintain (§6.6).

B To write a method that converts hexadecimals to decimals (§6.7).

B To use method overloading and understand ambiguous overloading

(§6.8).
B To determine the scope of variables (§6.9).

B To apply the concept of method abstraction in software development
(8§6.10).

B To design and implement methods using stepwise refinement (§6.11).

STUDENTS-HUB.com Uploaded By: 1210711 @student.birzeit.edu

206 Chapter 6 Methods

6.

| Introduction

Methods can be used to define reusable code and organize and simplify coding, and

make code easy to maintain.
Klfoyint Suppose you need to find the sum of integers from 1 to 10, 20 to 37, and 35 to 49, respec-
problem tively. You may write the code as follows:

int sum = 0;
for (int i =1; i <= 10; i++)
sum += 1;
System.out.printin("Sum from 1 to 10 is " + sum);

sum = 0;
for (int i = 20; i <= 37; i++)
sum += i;

System.out.printin("Sum from 20 to 37 is " + sum);

sum = 0;
for (int i = 35; i <= 49; i++)
sum += 1;

System.out.printin("Sum from 35 to 49 is + sum);

You may have observed that computing these sums from 1 to 10, 20 to 37, and 35 to 49 are very

similar, except that the starting and ending integers are different. Wouldn’t it be nice if we could write
why methods? the common code once and reuse it? We can do so by defining a method and invoking it.

The preceding code can be simplified as follows:

Listiné MethodDemo. java

define sum method

1

2

3

4

5

6

7

8

main method 9
invoke sum 10
11

12

13

public static int sum(int i1, int i2) {
int result 0

for (int i i

result += 1i;

1, 1 <= 125 i++)

return result;

}

public static void main(String[] args) {
System.out.printin("Sum from 1 to 10 is " + sum(1, 10));
System.out.printin("Sum from 20 to 37 is " + sum(20, 37));
System.out.println("Sum from 35 to 49 is " + sum(35, 49));

}

Lines 1-7 define the method named sum with two parameters i1 and i2. The statements in
the main method invoke sum(1, 10) to compute the sum from 1 to 10, sum (20, 37) to
compute the sum from 20 to 37, and sum (35, 49) to compute the sum from 35 to 49.

method

A method is a collection of statements grouped together to perform an operation. In earlier chap-

ters you have used predefined methods such as System.out.printin, System.exit, Math.
pow, and Math . random. These methods are defined in the Java library. In this chapter, you will
learn how to define your own methods and apply method abstraction to solve complex problems.

ﬁeck 6.1.1 What are the benefits of using a method?

Point

6.

2 Defining a Method

A method definition consists of method name, parameters, return value type, and body.

Key The syntax for defining a method is as follows:

Point

modifier returnValueType methodName(list of parameters) {
/' Method body;

STUDENTS-HUB.com Uploaded By: 1210711 @student.birzeit.edu

6.2 Defining a Method 207

Let’s look at a method defined to find the larger between two integers. This method, named
max, has two int parameters, num1 and num2, the larger of which is returned by the method.
Figure 6.1 illustrates the components of this method.

Define a method

Invoke a method

method formal
name parameters

TN

return value
modifier type

N

method —>»public static int|max(int numl, int num2) |{ int z =
header T T
thod int result; T T
metho
— .
. arameter list method
body if (numl > num2) p .
signature
result = numl;
else
result = num2;
_return result; <«———— return value

}

max (X, y);

actual parameters

P

(arguments)

FIGURE 6.1 A method definition consists of a method header and a method body.

The method header specifies the modifiers, return value type, method name, and parameters
of the method. The stat1ic modifier is used for all the methods in this chapter. The reason for
using it will be discussed in Chapter 9, Objects and Classes.

A method may return a value. The returnValueType is the data type of the value the
method returns. Some methods perform desired operations without returning a value. In this case,
the returnValueType is the keyword void. For example, the returnValueType is void in
the main method, as well as in System.exit, and System.out.print1n. If a method returns
a value, it is called a value-returning method; otherwise, it is called a void method.

The variables defined in the method header are known as formal parameters or simply pa-
rameters. A parameter is like a placeholder: when a method is invoked, you pass a value to the
parameter. This value is referred to as an actual parameter or argument. The parameter list
refers to the method’s type, order, and the number of parameters. The method name and the pa-
rameter list together constitute the method signature. Parameters are optional; that is, a method
may contain no parameters. For example, the Math. random () method has no parameters.

The method body contains a collection of statements that implement the method. The method
body of the max method uses an i f statement to determine which number is larger and return the
value of that number. In order for a value-returning method to return a result, a return statement
using the keyword return is required. The method terminates when a return statement is executed.

Note
Some programming languages refer to methods as procedures and functions. In those lan-
guages, a value-returning method is called a function and a void method is called a procedure.

Caution
In the method header, you need to declare each parameter separately. For instance,
max (int num1, int num2) is correct, but max (int num1, num2) is wrong.

A

Note
We say “define a method” and “declare a variable.” We are making a subtle distinction
here. A definition defines what the defined item is, but a declaration usually involves

method header
modifier

value-returning method
void method

formal parameter
parameter

actual parameter
argument

parameter list

method signature

define vs. declare

STUDENT S-HUB:@@iig memory to store data for the declared it ploaded By: 1210711 @student.birzeit.edu

208 Chapter 6 Methods

ﬁeek 6.2.1 How do you simplify the max method in Listing 6.1 using the conditional operator?
Point 6,2.2 Define the terms parameter, argument, and method signature.

6.3 Calling a Method

Calling a method executes the code in the method.

Key In a method definition, you define what the method is to do. To execute the method, you have

caller Point to call or invoke it. The program that calls the function is called a caller. There are two ways
to call a method, depending on whether the method returns a value or not.

If a method returns a value, a call to the method is usually treated as a value. For example,

int larger = max(3, 4);

callsmax (3, 4) and assigns the result of the method to the variable Targer. Another exam-
ple of a call that is treated as a value is

System.out.printin(max (3, 4));

which prints the return value of the method call max (3, 4).
If a method returns void, a call to the method must be a statement. For example, the
method print1n returns void. The following call is a statement:

System.out.printin("Welcome to Javal!");

Note
A value-returning method can also be invoked as a statement in Java. In this case, the
caller simply ignores the return value. This is not often done, but it is permissible if the
caller is not interested in the return value.

When a program calls a method, program control is transferred to the called method. A
called method returns control to the caller when its return statement is executed or when its
method-ending closing brace is reached.

B Listing 6.1 presents a complete program that is used to test the max method.

VideoNote i
LISTING 6.1 TestMax.java

Define/invoke max method

public class TestMax {

/** Main method */

public static void main(String[] args) {
int i 5;
int j 2;
int k max (i, j);
System.out.printin("The maximum of " + i +

"and "+ j + " is " + K);

main method

invoke max

}

1

2

3

4

5

6

7

8

9

10

11 /** Return the max of two numbers */

define method 12 public static int max(int num1, int num2) {
13 int result;
14
15 if (num1 > num2)
16 result = numi;
17 else
18 result = num2;
19
20

return result;

22

}
STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

6.3 Calling a Method 209

The maximum of 5 and 2 is 5 g

line# i j k numl num2 result

Invoking max 13 undefined

16 5

This program contains the main method and the max method. The main method is just like

any other method, except that it is invoked by the JVM to start the program. main method
The main method’s header is always the same. Like the one in this example, it includes the

modifiers pub1ic and static, return value type void, method name main, and a parameter

of the String[] type. String[] indicates the parameter is an array of String, a subject

addressed in Chapter 7.
The statements in main may invoke other methods that are defined in the class that con-

tains the main method or in other classes. In this example, the main method invokes max (1,

j), which is defined in the same class with the main method. max method
When the max method is invoked (line 6), variable i’s value 5 is passed to num1 and vari-

able j’s value 2 is passed to num2 in the max method. The flow of control transfers to the max

method and the max method is executed. When the return statement in the max method is

executed, the max method returns the control to its caller (in this case, the caller is the main

method). This process is illustrated in Figure 6.2.

The values of i and j are passed to num! and num?2.

public static » | public stafic int mgx

void main ($tring[] args) { (int numl, int num2) {
int 1 5; int result;
int j 2;

int k max (i, J); if (numl > num2)
System.out.println ("TH + result = numl;
"maximum between " + i + else

"and " 4+ J + " is " + k); result = num2;

™~ return result;

}

FIGURE 6.2 When the max method is invoked, the flow of control transfers to it. Once the max method is finished, it re-
turns control back to the caller.

Caution

A return statement is required for a value-returning method. The method given in
(a) is logically correct, but it has a compile error because the Java compiler thinks this
method might not return a value.

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

210 Chapter6 Methods

public static int sign(int n)
if (n > 0)
return 1;
else if (n ==
return O0;
else if (n < 0)
return —1;

{

Should be

public static int sign(int n)
if (n > 0)
return 1;

(a)

» else if (n == 0)
return 0;

else
return —1;

{

(b)

To fix this problem, delete if (n < 0) in (a), so the compiler will see a return
statement to be reached regardless of how the i f statement is evaluated, as shown in (b).

Note

Methods enable code sharing and reuse. The max method can be invoked from any
class, not just TestMax. If you create a new class, you can invoke the max method
using ClassName .methodName (i.e., TestMax.max).

reusing method

activation record
Each time a method is invoked, the system creates an activation record that stores parameters and
variables for the method and places the activation record in an area of memory known as a call
stack. A call stack is also known as an execution stack, runtime stack, or machine stack and it is
often shortened to just “the stack.” When a method calls another method, the caller’s activation re-
cord is kept intact and a new activation record is created for the new method called. When a method
finishes its work and returns to its caller, its activation record is removed from the call stack.

A call stack stores the activation records in a last-in, first-out fashion: The activation re-
cord for the method that is invoked last is removed first from the stack. For example, suppose
method m1 calls method m2, and m2 calls method m3. The runtime system pushes m1’s activa-
tion record into the stack, then m2’s, and then m3’s. After m3 is finished, its activation record
is removed from the stack. After m2 is finished, its activation record is removed from the
stack. After m1 is finished, its activation record is removed from the stack.

Understanding call stacks helps you to comprehend how methods are invoked. The vari-
ables defined in the main method in Listing 6.1 are 1, j, and k. The variables defined in the
max method are num1, num2, and result. The variables num1 and num2 are defined in the
method signature and are parameters of the max method. Their values are passed through
method invocation. Figure 6.3 illustrates the activation records for method calls in the stack.

call stack

Activation record
for the main method

k:
Jj: 2
i: 5

Activation record
for the max method
result:

num2: 2
numl: 5

Activation record
for the main method

k:
J: 2
i: 5 -—J

(1) The main
method is invoked.

FIGURE 6.3 When the max method is invoked, the flow of control transfers to the max method. Once the max method is

(2) The max method is
invoked.

finished, it returns control back to the caller.

ﬁeck
Point

STUDENTS-HUB.com

6.3.1
6.3.2

Activation record
for the max method
result: 5

num2: 2

numl: 5

Activation record
for the main method

k:
J: 2
i: 5

Activation record
for the main method

k: 5
J: 2
i: 5

Stack is empty

(3) The max method is
being executed.

(4) The max method is
finished and the return
value is sent to k.

How do you define a method? How do you invoke a method?

(5) The main
method is finished.

Reformat the following program according to the programming style and documen-

tation guidelines proposed in Section 1.9, Programming Style and Documentation.

Use the end-of-line brace styleqU ploaded By: 1210711@student.birzeit.edu

6.4 void vs. Value-Returning Methods 211

public class Test {
public static double method(double i, double j)
{
while (i < j) {
i==s
}
return j;

}

O©CoO~NOOOhhWN-=

}

6.4 void vs. Value-Returning Methods

A void method does not return a value.

The preceding section gives an example of a value-returning method. This section shows Key
how to define and invoke a void method. Listing 6.2 gives a program that defines a method ~ Point

named printGrade and invokes it to print the grade for a given score.
LISTING 6.2 TestVoidMethod.java VideoNote
Use void method
1 public class TestVoidMethod ({
2 public static void main(String[] args) { main method
3 System.out.print("The grade is ");
4 printGrade(78.5); invoke printGrade
5
6 System.out.print("The grade is ");
7 printGrade(59.5);
8 }
9
10 public static void printGrade(double score) { printGrade method
11 if (score >= 90.0) {
12 System.out.printin('A");
13 }
14 else if (score >= 80.0) {
15 System.out.printin('B");
16 }
17 else if (score >= 70.0) {
18 System.out.printin('C");
19 }
20 else if (score >= 60.0) {
21 System.out.printin('D");
22 }
23 else {
24 System.out.printin('F");
25 }
26 }
27 '}

The grade is C E
The grade is F

The printGrade method is a void method because it does not return any value. A call toa invoke void method
void method must be a statement. Therefore, it is invoked as a statement in line 4 in the main
method. Like any Java statement, it is terminated with a semicolon.

To see the differences between a void and value-returning method, let’s redesign the void vs. value-returned
printGrade method to return a value. The new method, which we call getGrade, returns

STUDE Nikegrekitlah3i@o mListing 6.3. Uploaded By: 1210711 @student.birzeit.edu

212 Chapter6 Methods

LISTING 6.3 TestReturnGradeMethod.java
public class TestReturnGradeMethod {

main method

invoke getGrade

getGrade method

O©OO~NOOOP~WN=

10
11
12
13
14
15
16
17
18
19

public

static void main(String[] args) {

System.out.print("The grade is " + getGrade(78.5));
System.out.print("\nThe grade is " + getGrade(59.5));

}

public static char getGrade(double score) {
if (score >= 90.0)

return 'A’;

else if (score >= 80.0)
return 'B';

else if (score >= 70.0)
return 'C';

else if (score >= 60.0)
return 'D';

else
return 'F';

}
}

The grade is C
The grade is F

The getGrade method defined in lines 7—18 returns a character grade based on the numeric
score value. The caller invokes this method in lines 3 and 4.

The getGrade method can be invoked by a caller wherever a character may appear. The
printGrade method does not return any value, so it must be invoked as a statement.

return in void method

STUDENTS-HUB.com

v

Note

A return statement is not needed for a void method, but it can be used for termi-

nating the method and returning to the method’s caller. The syntax is simply

return;

This is not often done, but sometimes it is useful for circumventing the normal flow of
control in a void method. For example, the following code has a return statement to
terminate the method when the score is invalid:

public static void printGrade(double score) ({

}

if (score < 0 || score > 100) {
System.out.printin("Invalid score");
return;

}

if (score >= 90.0) {
System.out.printin('A");
}

else if (score >= 80.0) {
System.out.printin('B");

}

else if (score >= 70.0) {
System.out.printin('C");

}

else if (score >= 60.0) {
System.out.printin('D");

}

else {

System.out.printin('F");

}
Uploaded By: 1210711@student.birzeit.edu

6.5 Passing Arguments by Values 213

6.4.1 True or false? A call to a method with a void return type is always a statement it-
self, but a call to a value-returning method cannot be a statement by itself.

6.4.2 What is the return type of a main method?

6.4.3 What would be wrong with not writing a return statement in a value-returning
method? Can you have a return statement in a void method? Does the return
statement in the following method cause syntax errors?

public static void xMethod(double x, double y) {
System.out.println(x + y);
return x + vy;

}
6.4.4 Write method headers (not the bodies) for the following methods:

a. Return a sales commission, given the sales amount and the commission rate.
b. Display the calendar for a month, given the month and year.

c. Return a square root of a number.

d. Test whether a number is even, and returning true if it is.

e. Display a message a specified number of times.

f. Return the monthly payment, given the loan amount, number of years, and
annual interest rate.

g. Return the corresponding uppercase letter, given a lowercase letter.

6.4.5 Identify and correct the errors in the following program:

1 public class Test {

2 public static method1(int n, m) {
3 n += m;

4 method2(3.4);

5 }

6

7 public static int method2(int n) {
8 if (n > 0) return 1;

9 else if (n == 0) return 0;

10 else if (n < 0) return -1;

11 }

12}

6.5 Passing Arguments by Values

The arguments are passed by value to parameters when invoking a method.

The power of a method is its ability to work with parameters. You can use print1n to print
any string, and max to find the maximum of any two int values. When calling a method, you
need to provide arguments, which must be given in the same order as their respective parame-
ters in the method signature. This is known as parameter order association. For example, the
following method prints a message n times:

public static void nPrintin(String message, int n) {
for (int i = 0; i < n; i++)
System.out.println(message) ;

}

YoucanusenPrintin("Hello", 3) toprintHel1o three times. The nPrintin("Hello",
3) statement passes the actual string parameter He11o0 to the parameter message, passes 3 to

Key
Point

parameter order association

STUDENTE FUBConiee mes- However thesmenent (fp1580€a By L2487 f t@student birzeit.edu

214 Chapter6 Methods

pass-by-value

invoke increment

increment n

STUDENTS-HUB.com

2

wrong. The data type of 3 does not match the data type for the first parameter, message, nor
does the second argument, He110, match the second parameter, n.

Caution

The arguments must match the parameters in order, number, and compatible type, as
defined in the method signature. Compatible type means you can pass an argument
to a parameter without explicit casting, such as passing an int value argument to a
doub1e value parameter.

When you invoke a method with an argument, the value of the argument is passed to the
parameter. This is referred to as pass-by-value. If the argument is a variable rather than a
literal value, the value of the variable is passed to the parameter. The variable is not affected,
regardless of the changes made to the parameter inside the method. As given in Listing 6.4,
the value of x (1) is passed to the parameter n to invoke the increment method (line 5). The
parameter n is incremented by 1 in the method (line 10), but x is not changed no matter what
the method does.

LISTING 6.4 Increment.java

1 public class Increment {

2 public static void main(String[] args) {

3 int x = 1;

4 System.out.printin("Before the call, x is " + x);
5 increment (x) ;

6 System.out.printin("After the call, x is " + x);
7 }

8

9 public static void increment(int n) {

10 n++;

11 System.out.printin("n inside the method is " + n);
12 }

13}

Before the call, x is 1
n inside the method is 2
After the call, x is 1

Listing 6.5 gives another program that demonstrates the effect of passing by value. The pro-
gram creates a method for swapping two variables. The swap method is invoked by passing
two arguments. Interestingly, the values of the arguments are not changed after the method
is invoked.

LISTING 6.5 TestPassByValue.java

1 public class TestPassByValue {

2 /** Main method */

3 public static void main(String[] args) {
4 /1l Declare and initialize variables

5 int numi 1;
6

7

8

9

int num2 2;

System.out.printin("Before invoking the swap method, num1 is " +
" and num2 is + num2);

numl +

Uploaded By: 1210711@student.birzeit.edu

6.5 Passing Arguments by Values 215

10
11 /1 Invoke the swap method to attempt to swap two variables
12 swap (num1, num2);
13
14 System.out.printin("After invoking the swap method, num1 is " +
15 num1 + " and num2 is " + num2); false swap
16 }
17
18 /** Swap two variables */
19 public static void swap(int n1, int n2) {
20 System.out.println("\tInside the swap method");
21 System.out.println("\t\tBefore swapping, n1 is " + n1
22 + " and n2 is " + n2);
23
24 /1 Swap n1 with n2
25 int temp = n1;
26 n1 = n2;
27 n2 = temp;
28
29 System.out.printin("\t\tAfter swapping, n1 is " + ni
30 + " and n2 is " + n2);
31 }
32}
Before invoking the swap method, num1 is 1 and num2 is 2 g

Inside the swap method
Before swapping, n1 is 1 and n2 is 2
After swapping, n1 is 2 and n2 is 1
After invoking the swap method, num1 is 1 and num2 is 2

Before the swap method is invoked (line 12), num1 is 1 and num2 is 2. After the swap method
is invoked, num1 is still 1 and num2 is still 2. Their values have not been swapped. As shown
in Figure 6.4, the values of the arguments num1 and num2 are passed to n1 and n2, but n1 and
n2 have their own memory locations independent of num1 and num2. Therefore, changes in
n1 and n2 do not affect the contents of num1 and num2.

The values for n1 and n2 are

The values of numl and num?2 are swapped, but it does not affect
passed to nl and n2. numl and num?2.
Space required for the Space required for the
swap method swap method
temp: temp:
n2: 2 [<€9 n2: 1
nl: 1 <75 nl: 2
1
Space required for the Space required for the : 1| Space required for the Space required for the
main method main method : : main method main method Stack is empty
1
num2: 2 num2: 2 == : num2: 2 num2: 2
numl: 1 numl: 1f=== numl: 1 numl: 1
The main method The swap method The swap method The swap method The main method
is invoked. is invoked. is executed. is finished. is finished.

FIGURE 6.4 The values of the variables are passed to the method’s parameters.

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

216 Chapter6 Methods

Another twist is to change the parameter name n1 in swap to num1. What effect does
this have? No change occurs, because it makes no difference whether the parameter and the
argument have the same name. The parameter is a variable in the method with its own mem-
ory space. The variable is allocated when the method is invoked, and it disappears when the
method is returned to its caller.

Note

For simplicity, Java programmers often say passing x to y, which actually means pass-
ing the value of argument X to parameter y.

ﬁeck 6.5.1 How is an argument passed to a method? Can the argument have the same name as
Point its parameter?

6.5.2 Identify and correct the errors in the following program:

public class Test {
public static void main(String[] args) {
nPrintin(5, "Welcome to Java!");

}

public static void nPrintin(String message, int n) {
int n = 1;
for (int i = 0; i < n; i++)
System.out.printin(message);

0O OVWoO~NOOThA WN=

-

}
6.5.3 What is pass-by-value? Show the result of the following programs.

6.5.4 For (a) in the preceding question, show the contents of the activation records in the
call stack just before the method max is invoked, just as max is entered, just before
max is returned, and right after max is returned.

public class Test { public class Test {
public static void main(String[] args) { public static void main(String[] args) {
int max = 0; int 1 = 1;
max (1, 2, max); while (i <= 6) {
System.out.println (max) ; methodl (1, 2);
} i++;

public static void max(}
int valuel, int value2, int max) {

if (valuel > value?2) public static void methodl (
max = valuel; int i, int num) {
else for (int jJ = 1; j <= 1i; J++) {
max = value2; System.out.print (num + " ");
} num *= 2;

} }

System.out.println() ;
}

(a) (b)

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

6.6 Modularizing Code 217

public class Test { public class Test {
public static void main(String[] args) { public static void main(String[] args) {
// Initialize times int 1 = 0;
int times = 3; while (i <= 4) {
System.out.println ("Before the call," methodl (1) ;
+ " variable times is " + times); i++;

}
// Invoke nPrintln and display times
nPrintln ("Welcome to Javal!", times); System.out.println("i is " + 1i);
System.out.println ("After the call," }

+ " variable times is " + times);

} public static void methodl (int i) {

do {

// Print the message n times if (i % 3 != 0)

public static void nPrintln(

String message, int n) {
while (n > 0) { }
System.out.println("n = " + n);

System.out.print(i + " ");
i-—;

while (i >= 1);
System.out.println (message) ;

n==; System.out.println();

(© (d)

6.6 Modularizing Code

Modularizing makes the code easy to maintain and debug and enables the code to be
reused. Key
Methods can be used to reduce redundant code and enable code reuse. Methods can also be Tt
used to modularize code and improve the quality of the program.

Listing 5.9 gives a program that prompts the user to enter two integers and displays B
their greatest common divisor. You can rewrite the program using a method, as given in

C . VideoNot
Listing 6.6. eeotiote

Modularize code

LISTING 6.6 GreatestCommonDivisorMethod.java

import java.util.Scanner;

1
2
3 public class GreatestCommonDivisorMethod ({
4 /** Main method */

5 public static void main(String[] args) {
6 /| Create a Scanner

7 Scanner input = new Scanner (System.in);
8

9 /1 Prompt the user to enter two integers

10 System.out.print("Enter first integer: ");

11 int n1 = input.nextInt();

12 System.out.print("Enter second integer: ");

13 int n2 = input.nextInt();

14

15 System.out.printin("The greatest common divisor for " + n1 +

16 "and " + n2 + " is " + gcd(n1, n2)); invoke gcd
17 }

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

218 Chapter 6 Methods

18
19 /** Return the gcd of two integers */

compute gcd 20 public static int gcd(int n1,int n2) {

21 int gcd = 1; // Initial gcd is 1
22 int k = 2; // Possible gcd
23
24 while (k <= n1 && k <= n2) {
25 if (n1 % k == 0 && n2 % k == 0)
26 gcd = k; // Update gcd
27 K++;
28 }
29
return gcd 30 return gcd; // Return gcd
31 }
32 }

E Enter first integer: 45
Enter second integer: 75

The greatest common divisor for 45 and 75 is 15

By encapsulating the code for obtaining the gcd in a method, this program has several

advantages:

1. Tt isolates the problem for computing the gcd from the rest of the code in the main
method. Thus, the logic becomes clear, and the program is easier to read.

2. The errors on computing the gcd are confined in the gcd method, which narrows the

scope of debugging.

3. The gcd method now can be reused by other programs.

Listing 6.7 applies the concept of code modularization to improve Listing 5.15,

PrimeNumber.java.

LISTING 6.7 PrimeNumberMethod. java

1 public class PrimeNumberMethod {
2 public static void main(String[] args) {
3 System.out.printin("The first 50 prime numbers are \n");
invoke printPrimeNumbers 4 printPrimeNumbers(50);
5 }
6
printPrimeNumbers 7 public static void printPrimeNumbers(int numberOfPrimes) ({
method 8 final int NUMBER_OF_PRIMES_PER_LINE = 10; // Display 10 per Tline
9 int count = 0; // Count the number of prime numbers
10 int number = 2; // A number to be tested for primeness
11
12 /| Repeatedly find prime numbers
13 while (count < numberOfPrimes) ({
14 // Print the prime number and increase the count
invoke isPrime 15 if (isPrime(number)) {
16 count++; // Increase the count
17
18 if (count % NUMBER_OF_PRIMES_PER_LINE ==

// Print the number and advance to the new 1line

19
STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

6.7 Case Study: Converting Hexadecimals to Decimals 219

20 System.out.printf("%-5d\n", number);

21 }

22 else

23 System.out.printf("%-5d", number);

24 }

25

26 /1 Check whether the next number is prime

27 number++;

28 }

29 }

30

31 /** Check whether number is prime */

32 public static boolean isPrime(int number) ({ isPrime method
33 for (int divisor = 2; divisor <= number / 2; divisor++) {

34 if (number % divisor == 0) { // If true, number is not prime
35 return false; // Number is not a prime

36 }

37 }

38

39 return true; // Number is prime

40 }

41 '}

The first 50 prime numbers are g

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

We divided a large problem into two subproblems: determining whether a number is a prime,
and printing the prime numbers. As a result, the new program is easier to read and easier to
debug. Moreover, the methods printPrimeNumbers and isPrime can be reused by other

programs.

6.6.1 Trace the gcd method to find the return value for gcd (4, 6). ﬁeck

6.6.2 Trace the isPrime method to find the return value for isPrime (25). Point

6.7 Case Study: Converting Hexadecimals to Decimals

This section presents a program that converts a hexadecimal number into a decimal number. Key
Point

Listing 5.11, Dec2Hex.java, gives a program that converts a decimal to a hexadecimal. How
would you convert a hex number into a decimal?
Given a hexadecimal number h,h,_h,_, . .. hyh h, the equivalent decimal value is

h, X 16" + h,_; X 16" " + h, 5, X 16" 2+ ...
+ hy X 167 + by X 16" + hy X 16°

For example, the hex number AB8C is
10 X 16° + 11 X 16> + 8 X 16" + 12 X 16° = 43916

Our program will prompt the user to enter a hex number as a string and convert it into a deci-
mal using the following method:

public static int hexToDecimal (String hex)

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

220 Chapter 6 Methods

A brute-force approach is to convert each hex character into a decimal number, multiply it by
16 for a hex digit at the i’s position, and then add all the items together to obtain the equiva-
lent decimal value for the hex number.

Note that
By X 16" + b,y X 16"V + b,y X 1672 4+ -+ + hy X 16" + hy X 16°
= (.. ((hy X 16 + hy_)) X 16 + hy_p) X 16 + -+ + =) X 16 + h

This observation, known as the Horner’s algorithm, leads to the following efficient code for
converting a hex string to a decimal number:

int decimalValue = 0;
for (int i = 0; i < hex.length(); i++) {
char hexChar hex.charAt(i);
decimalValue decimalValue * 16 + hexCharToDecimal (hexChar);

}

Here is a trace of the algorithm for hex number AB8C:

hexCharToDecimal
i hexChar (hexChar) decimalValue
0

Before the loop

After the 1st iteration 0 A 10 10

After the 2nd iteration 1 B 11 10 * 16 + 11

After the 3rd iteration 2 8 8 (10 * 16 + 11) * 16 + 8
After the 4th iteration 3 C 12 ((10 * 16 + 11)

* 16 +8) * 16 + 12

Listing 6.8 gives the complete program.

LISTING 6.8 Hex2Dec.java

import java.util.Scanner;

1
2
3 public class Hex2Dec {

4 /** Main method */

5 public static void main(String[] args) {
6 /| Create a Scanner

7 Scanner input = new Scanner(System.in);
8

9 /1 Prompt the user to enter a string

10 System.out.print("Enter a hex number: ");
input string 11 String hex = input.nextLine();

12

13 System.out.printin("The decimal value for hex number "
hex to decimal 14 + hex + " is " + hexToDecimal (hex.toUpperCase()));

15 }

16

17 public static int hexToDecimal (String hex) {

18 int decimalValue = 0;

19 for (int i = 0; i < hex.length(); i++) {

20 char hexChar x.charAt (i);

he
decimalValue decimalValue * 16 + hexCharToDecimal (hexChar);

21
STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

6.8 Overloading Methods 221

22 }

23

24 return decimalValue;

25 }

26

27 public static int hexCharToDecimal (char ch) { hex char to decimal
28 if (ch >= "A" && ch <= 'F") check uppercase
29 return 10 + ch - 'A";

30 else // ch is '0', "1', ..., or '9'

31 return ch - '0";

32 }

33 1}

Enter a hex number: AB8C g

The decimal value for hex number AB8C is 43916

Enter a hex number: af71 E

The decimal value for hex number af71 is 44913

The program reads a string from the console (line 11) and invokes the hexToDecimal method
to convert a hex string to decimal number (line 14). The characters can be in either lowercase or
uppercase. They are converted to uppercase before invoking the hexToDecimal method.

The hexToDecimal method is defined in lines 17-25 to return an integer. The length of
the string is determined by invoking hex. Tength () in line 19.

The hexCharToDecimal method is defined in lines 27-32 to return a decimal value for
a hex character. The character can be in either lowercase or uppercase. Recall that to subtract

two characters is to subtract their Unicodes. For example, '5" - '0' is 5.
6.7.1 Whatis hexCharToDecimal('B'))?
What is hexCharToDecimal ('7'))? /lgl(fi;l:
What is hexToDecimal ("A9"))?
6.8 Overloading Methods
0ve.rloading metﬁods enab.le you to define the methods with the same name as long as Key
their parameter lists are different. Point

The max method used earlier works only with the int data type. But what if you need to
determine which of the two floating-point numbers has the maximum value? The solution is
to create another method with the same name but different parameters, as shown in the fol-
lowing code:

public static double max(double num1, double num2) {
if (num1 > num2)
return numi;
else
return num2;

}

If you call max with int parameters, the max method that expects int parameters will be

invoked; and if you call max with doub1e parameters, the max method that expects double

parameters will be invoked. This is referred to as method overloading; that is, two methods method overloading
have the same name but different parameter lists within one class. The Java compiler deter-

mines which method to use based on the method signature.

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

222 Chapter 6 Methods

Listing 6.9 is a program that creates three methods. The first finds the maximum integer,
the second finds the maximum double, and the third finds the maximum among three double
values. All three methods are named max.

LISTING 6.9 TestMethodOverloading.java

1 public class TestMethodOverloading {
2 /** Main method */
3 public static void main(String[] args) {
4 /'l Invoke the max method with int parameters
5 System.out.printin("The maximum of 3 and 4 is "
6 + max (3, 4));
7
8 /] Invoke the max method with the double parameters
9 System.out.printin("The maximum of 3.0 and 5.4 is "
10 + max (3.0, 5.4));
11
12 /'l Invoke the max method with three double parameters
13 System.out.printin("The maximum of 3.0, 5.4, and 10.14 is "
14 + max (3.0, 5.4, 10.14));
15 }
16
17 /** Return the max of two int values */
overloaded max 18 public static int max(int num1, int num2) {
19 if (num1 > num2)
20 return numi;
21 else
22 return num2;
23 }
24
25 /** Find the max of two double values */
overloaded max 26 public static double max(double numi1, double num2) ({
27 if (num1 > num2)
28 return numi;
29 else
30 return num2;
31 }
32
33 /** Return the max of three double values */
overloaded max 34 public static double max(double num1, double num2, double num3) {
35 return max(max(num1, num2), num3);
36 }
37 1}

g The maximum of 3 and 4 is 4
The maximum of 3.0 and 5.4 is 5.4

The maximum of 3.0, 5.4, and 10.14 is 10.14

When calling max (3, 4) (line 6), the max method for finding the maximum of two integers
is invoked. When calling max (3.0, 5.4) (line 10), the max method for finding the maxi-
mum of two doubles is invoked. When calling max (3.0, 5.4, 10.14) (line 14), the max
method for finding the maximum of three double values is invoked.

Can you invoke the max method with an int value and a doub1e value, such as max (2,
2.5)? If so, which of the max methods is invoked? The answer to the first question is yes.
The answer to the second question is that the max method for finding the maximum of two
doubTe values is invoked. The argument value 2 is automatically converted into a double
value and passed to this method.

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

6.8 Overloading Methods 223

You may be wondering why the method max (double, double) is not invoked for the
call max (3, 4).Both max(double, double) and max(int, int) are possible matches
for max (3, 4). The Java compiler finds the method that best matches a method invocation.
Since the method max (int, 1int) is a better match for max (3, 4) than max(double,
double), max (int, int) isused toinvoke max (3, 4).

Tip

Q Overloading methods can make programs clearer and more readable. Methods that per-
form the same function with different types of parameters should be given the same
name.

Note
Overloaded methods must have different parameter lists. You cannot overload methods
based on different modifiers or return types.

Note
Sometimes there are two or more possible matches for the invocation of a method, but ambiguous invocation
the compiler cannot determine the most specific match. This is referred to as ambigu-
ous invocation. Ambiguous invocation causes a compile error. Consider the following
code:

public class AmbiguousOverloading {
public static void main(String[] args) {
System.out.printin(max(1, 2));
}

public static double max(int numi, double num2) {
if (num1 > num2)
return numi;
else
return num2;

}

public static double max(double numi1, int num2) {
if (num1 > num2)
return numi;
else
return num2;
}
}

Both max (int, double) and max(double, int) are possible candidates to
match max (1, 2). Because neither is more specific than the other, the invocation is
ambiguous, resulting in a compile error.

6.8.1 What is method overloading? Is it permissible to define two methods that have the
same name but different parameter types? Is it permissible to define two methods A‘;ﬂ:
in a class that have identical method names and parameter lists, but different return
value types or different modifiers?

6.8.2 What is wrong in the following program?

public class Test {
public static void method(int x) {

}

public static int method(int y) ({

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

224 Chapter 6 Methods

return y;

}
}

6.8.3 Given two method definitions,
public static double m(double x, double y)

public static double m(int x, double y)

tell which of the two methods is invoked for:
a. double z = m(4, 5);

b. double z = m(4, 5.4);

c. double z = m(4.5, 5.4);

6.9 The Scope of Variables

Key

Point The scope of a variable is the part of the program where the variable can be referenced.
scope of variables Section 2.5 introduced the scope of a variable. This section discusses the scope of variables
local variable in detail. A variable defined inside a method is referred to as a local variable. The scope of a

local variable starts from its declaration and continues to the end of the block that contains the
variable. A local variable must be declared and assigned a value before it can be used.

A parameter is actually a local variable. The scope of a method parameter covers the entire
method. A variable declared in the initial-action part of a for-loop header has its scope in the
entire loop. However, a variable declared inside a for-loop body has its scope limited in the loop
body from its declaration to the end of the block that contains the variable, as shown in Figure 6.5.

public static void method() {

___for (int 1 = 1; 1 < 10; i++) {

The scope of i ——>

int j;

The scope of j

L

FIGURE 6.5 A variable declared in the initial-action part of a for-loop header has its scope
in the entire loop.

You can declare a local variable with the same name in different blocks in a method, but you
cannot declare a local variable twice in the same block or in nested blocks, as shown in Figure 6.6.

Caution

A common mistake is to declare a variable in a for loop and then attempt to use it
outside the loop. As shown in the following code, 1 is declared in the for loop, but it
is accessed from the outside of the for loop, which causes a syntax error.

for (int i = 0; i < 10; i++) {
}

System.out.printin(i); // Causes a syntax error on i

The last statement would cause a syntax error, because variable i is not defined outside

STUDENTS-HUB.com of the for loop. Uploaded By: 1210711 @student.birzeit.edu

6.10 Case Study: Generating Random Characters 225

public static void methodl () {
int x = 1;
int y = 1;
Scope for (int i = 1; 1 < 10; 1i++) {
ofip > X += 1;
-}
Scope [for (int i = 1; i < 10; i++) {
of i ” y += 1i;
-}
}
(a) It is fine to declare i in two nonnested blocks
public static void method2 () {
Scope | int 1 = 1;
of i int sum = 0;
Scope for (int i = 1; i < 10; i++) {
of i 'I- sum += 1i;
}
-}

(b) It is wrong to declare i in two nested blocks

FIGURE 6.6 A variable can be declared multiple times in nonnested blocks, but only once in

nested blocks.

6.9.1 What is a local variable? ﬁ eck
6.9.2 What is the scope of a local variable? Point
6.10 Case Study: Generating Random Characters

A character is coded using an integer. Generating a random character is to generate Key

an integer. Point

Computer programs process numerical data and characters. You have seen many examples
that involve numerical data. It is also important to understand characters and how to process
them. This section presents an example of generating random characters.

As introduced in Section 4.3, every character has a unique Unicode between 0 and FFFF
in hexadecimal (65535 in decimal). To generate a random character is to generate a random
integer between 0 and 65535 using the following expression (note since 0 <= Math.ran-
dom() < 1.0, you have to add 1 to 65535):

(int) (Math.random() * (65535 + 1))

Now let’s consider how to generate a random lowercase letter. The Unicodes for lowercase
letters are consecutive integers starting from the Unicode for a, then for b, c, ..., and z.
The Unicode for a is

(int)'a’
Thus, a random integer between (int) 'a’ and (int) 'z’ is

(int) ((int)'a' + Math.random() * ((int)'z' - (int)'a' + 1))

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

226 Chapter 6 Methods

As discussed in Section 4.3.3, all numeric operators can be applied to the char operands. The
char operand is cast into a number if the other operand is a number or a character. Therefore,
the preceding expression can be simplified as follows:

‘a' + Math.random() * ('z' - 'a' + 1)
and a random lowercase letter is
(char)('a' + Math.random() * ('z' - 'a' + 1))
Hence, a random character between any two characters ch1 and ch2 with ch1 < ch2 can be
generated as follows:
(char) (ch1 + Math.random() * (ch2 - ch1 + 1))
This is a simple but useful discovery. Listing 6.10 defines a class named RandomCharacter

with overloaded methods to get a certain type of random character. You can use these meth-
ods in your future projects.

LIsTING 6.10 RandomCharacter.java

1 public class RandomCharacter {
2 /** Generate a random character between ch1 and ch2 */
getRandomCharacter 3 public static char getRandomCharacter(char ch1, char ch2) {
4 return (char)(ch1 + Math.random() * (ch2 - ch1 + 1));
5 }
6
7 /** Generate a random lowercase letter */
getRandomLower 8 public static char getRandomLowerCaselLetter() {
Caseletter() 9 return getRandomCharacter('a', 'z');
10 }
11
12 /** Generate a random uppercase letter */
getRandomUpper 13 public static char getRandomUpperCaselLetter() {
Caseletter() 14 return getRandomCharacter('A", 'Z");
15 }
16
17 /** Generate a random digit character */
getRandomDigit 18 public static char getRandomDigitCharacter() {
Character () 19 return getRandomCharacter('0', '9");
20 }
21
22 /** Generate a random character */
getRandomCharacter () 23 public static char getRandomCharacter() {
24 return getRandomCharacter('\u0000', "\uFFFF");
25 }
26}
Listing 6.11 gives a test program that displays 175 random lowercase letters.
LIsTING 6.11 TestRandomCharacter.java
public class TestRandomCharacter {
/** Main method */
public static void main(String[] args) {
constants final int NUMBER_OF_CHARS = 175;

final int CHARS_PER_LINE = 25;

/! Print random characters between 'a' and 'z', 25 chars per Tine
for (int i = 0; i < NUMBER_OF_CHARS; i++) {
char ch = RandomCharacter.getRandomLowerCaselLetter();
if ((i + 1) % CHARS_PER_LINE == 0)
System.out.printin(ch);

STUDENTS-HUB.C(ym Uploaded By: 1210711@student.birzeit.edu

lowercase letter

1
2
3
4
5
6
7
8
9
0

1

6.11 Method Abstraction and Stepwise Refinement 227

12 else
13 System.out.print(ch);
14 }
15 }
16 }
gmjsohezfkgtazqgmswfclrao E

pnrunulnwmaztlfjedmpchcif
Talqdgivxkxpbzulrmgmbhikr
Tbnrjlsopfxahssghwuuljvbe
xbhdotzhpehbgmuwsfktwsoli
cbuwkzgxpmtzihgatdslvbwbz
bfesoklwbhnooygiigzdxuqni

Line 9 invokes getRandomLowerCaselLetter () defined in the RandomCharacter class.
Note getRandomLowerCaselLetter () does not have any parameters, but you still have to
use the parentheses when defining and invoking the method. parentheses required

6.11 Method Abstraction and Stepwise Refinement QQ
Key

The key to developing software is to apply the concept of abstraction.

You will learn many levels of abstraction from this book. Method abstraction is achieved by

separating the use of a method from its implementation. The client can use a method without

knowing how it is implemented. The details of the implementation are encapsulated in the videoNote
method and hidden from the client who invokes the method. This is also known as informa- stepwise refinement
tion hiding or encapsulation. If you decide to change the implementation, the client program
will not be affected, provided that you do not change the method signature. The implementa-
tion of the method is hidden from the client in a “black box,” as shown in Figure 6.7.

information hiding
method abstraction

Optional argument Optional return
for input value
Method Header

Method Body <«— Black box

FIGURE 6.7 The method body can be thought of as a black box that contains the detailed
implementation for the method.

You have already used the System.out.print method to display a string and the max
method to find the maximum number. You know how to write the code to invoke these meth-
ods in your program, but as a user of these methods, you are not required to know how they
are implemented.
The concept of method abstraction can be applied to the process of developing programs.
When writing a large program, you can use the divide-and-conquer strategy, also known as divide and conquer
stepwise refinement, to decompose it into subproblems. The subproblems can be further de- stepwise refinement
composed into smaller, more manageable problems.
Suppose that you write a program that displays the calendar for a given month of the year.
The program prompts the user to enter the year and the month, and then displays the entire
calendar for the month, as presented in the following sample

STUDENTS-HUB.com Upl%ded By: 1210711@student.birzeit.edu

228 Chapter 6 Methods

g Enter full year (e.g., 2012): 2012

Enter month as number between 1 and 12: 3

March 2012

Sun Mon Tue Wed Thu Fri Sat

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24
25 26 27 28 29 30

Let us use this example to demonstrate the divide-and-conquer approach.

6.11.1 Top-Down Design

How would you get started on such a program? Would you immediately start coding?
Beginning programmers often start by trying to work out the solution to every detail.
Although details are important in the final program, concern for detail in the early stages may
block the problem-solving process. To make problem solving flow as smoothly as possible,
this example begins by using method abstraction to isolate details from design and only later
implements the details.

For this example, the problem is first broken into two subproblems: get input from the user,
and print the calendar for the month. At this stage, you should be concerned with what the
subproblems will achieve, not with how to get input and print the calendar for the month. You
can draw a structure chart to help visualize the decomposition of the problem (see Figure 6.8a).

printCalendar

(main) printMonth

|
! v '

| readInput | | printMonth | |printMonthTitle| | printMonthBody|

(@ (b)
FIGURE 6.8 The structure chart shows the printCalendar problem is divided into two subproblems, readInput and

printMonth in (a), and printMonth is divided into two smaller subproblems, printMonthTit1e and printMonth-
Body in (b).

You can use Scanner to read input for the year and the month. The problem of printing
the calendar for a given month can be broken into two subproblems: print the month title, and
print the month body, as shown in Figure 6.8b. The month title consists of three lines: month
and year, a dashed line, and the names of the seven days of the week. You need to get the
month name (e.g., January) from the numeric month (e.g., 1). This is accomplished in get -
MonthName (see Figure 6.9a).

In order to print the month body, you need to know which day of the week is the first day of
the month (getStartDay) and how many days the month has (getNumberOfDaysInMonth),

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

6.11 Method Abstraction and Stepwise Refinement 229

|printMonthTitle| | printMonthBody

|

| getMonthName | | getStartDay | |getNumberOfDaysInMonth

(a) (b)
FIGURE 6.9 (a) To printMonthT1it1e, you need getMonthName. (b) The printMonth-
Body problem is refined into several smaller problems.

as shown in Figure 6.9b. For example, December 2013 has 31 days, and December 1, 2013
is a Sunday.

How would you get the start day for the first date in a month? There are several ways to do
so. Assume you know that the start day for January 1, 1800 was a Wednesday (START_DAY _
FOR_JAN_1_1800 = 3). You could compute the total number of days (totalNumberOf -
Days) between January 1, 1800 and the first date of the calendar month. The start day for the
calendar month is (totalNumberOfDays + START_DAY_FOR_JAN_1_1800) % 7, since
every week has seven days. Thus, the getStartDay problem can be further refined as get -
TotalNumberOfDays, as shown in Figure 6.10a.

getStartDay | getTotalNumberOfDays |

Yy
|getTotalNumberOfDays| isLeapYear

(@) (b)

FIGURE 6.10 (a) To getStartDay, you need getTotalNumberOfDays. (b) The getTo-
talNumberOfDays problem is refined into two smaller problems.

v

|getNumberOfDaysInMonth
T

To get the total number of days, you need to know whether the year is a leap year and the
number of days in each month. Thus, getTotalNumberOfDays can be further refined into
two subproblems: isLeapYear and getNumberOfDaysInMonth, as shown in Figure 6.10b.
The complete structure chart is shown in Figure 6.11.

6.11.2 Top-Down and/or Bottom-Up Implementation

Now we turn our attention to implementation. In general, a subproblem corresponds to a
method in the implementation, although some are so simple that this is unnecessary. You
would need to decide which modules to implement as methods and which to combine with
other methods. Decisions of this kind should be based on whether the overall program will be
easier to read as a result of your choice. In this example, the subproblem readInput can be
simply implemented in the main method.

You can use either a “top-down” or a “bottom-up” approach. The top-down approach im- top-down approach
plements one method in the structure chart at a time from the top to the bottom. Stubs—a stub
simple but incomplete version of a method—can be used for the methods waiting to be im-
plemented. The use of stubs enables you to quickly build the framework of the program.
Implement the main method first then use a stub for the printMonth method. For example,

STUDENTS HUB.com Uploaded By: 1210711@student birzeit.edu

230 Chapter6 Methods

printCalendar
(main)

I
v v

|printMonthTitle| | printMonthBody
v v
| getMonthName | | getStartDay |
| getTotalNumberOfDays |
A

|getNumberOfDaysInMonth

isLeapYear

FIGURE 6.11 The structure chart shows the hierarchical relationship of the subproblems in
the program.

let printMonth display the year and the month in the stub. Thus, your program may begin
as follows:

public class PrintCalendar {
/** Main method */
public static void main(String[] args) {
Scanner input = new Scanner (System.in);

/1 Prompt the user to enter year
System.out.print("Enter full year (e.g., 2012): ");
int year = input.nextInt();

/] Prompt the user to enter month
System.out.print("Enter month as a number between 1 and 12: ");
int month = input.nextInt();

/1 Print calendar for the month of the year
printMonth(year, month);
}

/** A stub for printMonth may Took Tike this */
public static void printMonth(int year, int month) ({
System.out.print(month + " " + year);

}

/** A stub for printMonthTitle may Took Tike this */
public static void printMonthTitle(int year, int month) {

}

/** A stub for printMonthBody may look like this */
public static void printMonthBody(int year, int month) {
}

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

6.1 Method Abstraction and Stepwise Refinement 231

/** A stub for getMonthName may look like this */
public static String getMonthName(int month) {
return "January"; // A dummy value

}

/[** A stub for getStartDay may Took Tike this */
public static int getStartDay(int year, int month) ({
return 1; // A dummy value

}

/** A stub for getTotalNumberOfDays may Took Tike this */

public static int getTotalNumberOfDays(int year, int month) {
return 10000; // A dummy value

}

/** A stub for getNumberOfDaysInMonth may Took 1ike this */
public static int getNumberOfDaysInMonth(int year, int month) {
return 31; // A dummy value

}

/** A stub for isLeapYear may 1ook like this */
public static boolean isLeapYear(int year) ({
return true; // A dummy value

}
}

Compile and test the program, and fix any errors. You can now implement the printMonth
method. For methods invoked from the printMonth method, you can again use stubs.
The bottom-up approach implements one method in the structure chart at a time from the bottom-up approach
bottom to the top. For each method implemented, write a test program, known as the driver, driver
to test it. The top-down and bottom-up approaches are equally good: Both approaches imple-
ment methods incrementally, help to isolate programming errors, and make debugging easy.
They can be used together.

6.11.3 Implementation Details

The isLeapYear(int year) method can be implemented using the following code from
Section 3.11:

return year % 400 == 0 || (year % 4 == 0 && year % 100 != 0);

Use the following facts to implement getTotalNumberOfDaysInMonth(int year, int
month):

B January, March, May, July, August, October, and December have 31 days.
B April, June, September, and November have 30 days.

B February has 28 days during a regular year, and 29 days during a leap year. A regular
year, therefore, has 365 days, and a leap year has 366 days.

To implement getTotalNumberOfDays (int year, int month), you need to compute
the total number of days (totalNumberOfDays) between January 1, 1800 and the first day
of the calendar month. You could find the total number of days between the year 1800 and
the calendar year then figure out the total number of days prior to the calendar month in the
calendar year. The sum of these two totals is totalNumber0OfDays.

To print a body, first pad some space before the start day then print the lines for every
week.

The complete program is given in Listing 6.12.

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

232 Chapter 6 Methods

LISTING 6.12 PrintCalendar.java

import java.util.Scanner;

1
2
3 public class PrintCalendar ({

4 /** Main method */

5 public static void main(String[] args) {
6 Scanner input = new Scanner(System.in);
7
8

/1 Prompt the user to enter year

9 System.out.print("Enter full year (e.g., 2012): ");

10 int year = input.nextInt();

11

12 /1 Prompt the user to enter month

13 System.out.print("Enter month as a number between 1 and 12: ");

14 int month = input.nextInt();

15

16 /1 Print calendar for the month of the year

17 printMonth(year, month);

18 }

19

20 /** Print the calendar for a month in a year */
printMonth 21 public static void printMonth(int year, int month) {

22 // Print the headings of the calendar

23 printMonthTitle(year, month);

24

25 /1 Print the body of the calendar

26 printMonthBody(year, month);

27 }

28

29 /** Print the month title, e.g., March 2012 */
printMonthTitle 30 public static void printMonthTitle(int year, int month) {

31 System.out.printin(" " + getMonthName (month)

32 + " " + year);

33 System.out.printin(" ");

34 System.out.printin(" Sun Mon Tue Wed Thu Fri Sat");

35 }

36

37 /** Get the English name for the month */
getMonthName 38 public static String getMonthName(int month) {

39 String monthName = "";

40 switch (month) {

41 case 1: monthName = "January"; break;

42 case 2: monthName = "February"; break;

43 case 3: monthName = "March"; break;

44 case 4: monthName = "April"; break;

45 case 5: monthName = "May"; break;

46 case 6: monthName = "June"; break;

47 case 7: monthName = "July"; break;

48 case 8: monthName = "August™; break;

49 case 9: monthName = "September"; break;

50 case 10: monthName = "October"; break;

51 case 11: monthName = "November"; break;

52 case 12: monthName = "December";

53 }

54

55 return monthName;

56 }

57

58 /** Print month body */

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

STUDENTS-HUB.com

6.11 Method Abstraction and Stepwise Refinement 233

public static void printMonthBody(int year, int month) { printMonthBody
/'l Get start day of the week for the first date in the month
int startDay = getStartDay(year, month);

/| Get number of days in the month
int numberOfDaysInMonth = getNumberOfDaysInMonth(year, month);

/| Pad space before the first day of the month

int i = 0;
for (i = 0; i < startDay; i++)
System.out.print (" "y

for (i = 1; i <= numberOfDaysInMonth; i++) {
System.out.printf("%4d", 1i);

if ((i + startDay) % 7 == 0)
System.out.printin();
}

System.out.printin();
}

/** Get the start day of month/1/year */

public static int getStartDay(int year, int month) { getStartDay
final int START_DAY_FOR_JAN_1_1800 = 3;
/'l Get total number of days from 1/1/1800 to month/1/year
int totalNumberOfDays = getTotalNumberOfDays(year, month);

/'l Return the start day for month/1/year
return (totalNumberOfDays + START_DAY_FOR_JAN_1_1800) % 7;
}

/** Get the total number of days since January 1, 1800 */
public static int getTotalNumberOfDays(int year, int month) { getTotalNumberOfDays
int total = 0;

/'l Get the total days from 1800 to 1/1/year
for (int i = 1800; i < year; i++)
if (isLeapYear(i))
total = total + 366;
else
total = total + 365;

/1 Add days from Jan to the month prior to the calendar month
for (int i = 1; i < month; i++)

total = total + getNumberOfDaysInMonth(year, 1i);

return total;

}
/** Get the number of days in a month */
public static int getNumberOfDaysInMonth(int year, int month) ({ getNumber0fDaysInMonth
if (month == 1 || month == || month == 5 || month == |
month == || month == 10 || month == 12)
return 31;
if (month == 4 || month == || month == 9 || month == 11)
return 30;

if (month == 2) return islLeapYear(year)? 29: 28;

Uploaded By: 1210711 @student.birzeit.edu

234 Chapter 6 Methods

119

120 return 0; // If month is incorrect
121 }
122
123 /** Determine if it is a leap year */
isLeapYear 124 public static boolean islLeapYear(int year) {
125 return year % 400 == 0 || (year % 4 == 0 && year % 100 != 0);
126 }
127 '}

The program does not validate user input. For instance, if the user enters either a month not in
the range between 1 and 12 or a year before 1800, the program displays an erroneous calen-
dar. To avoid this error, add an 1if statement to check the input before printing the calendar.

This program prints calendars for a month, but could easily be modified to print calendars
for a whole year. Although it can print months only after January 1800, it could be modified
to print months before 1800.

6.11.4 Benefits of Stepwise Refinement

Stepwise refinement breaks a large problem into smaller manageable subproblems. Each sub-
problem can be implemented using a method. This approach makes the program easier to
write, reuse, debug, test, modify, and maintain.

Simpler Program

The print calendar program is long. Rather than writing a long sequence of statements in one
method, stepwise refinement breaks it into smaller methods. This simplifies the program and
makes the whole program easier to read and understand.

Reusing Methods

Stepwise refinement promotes code reuse within a program. The isLeapYear method is
defined once and invoked from the getTotalNumberOfDays and getNumberOfDaysIn-
Month methods. This reduces redundant code.

Easier Developing, Debugging, and Testing

Since each subproblem is solved in a method, a method can be developed, debugged, and tested
individually. This isolates the errors and makes developing, debugging, and testing easier.
When implementing a large program, use the top-down and/or bottom-up approach. Do
not write the entire program at once. Using these approaches seems to take more development
incremental development and time (because you repeatedly compile and run the program), but it actually saves time and
testing makes debugging easier.

Better Facilitating Teamwork

When a large problem is divided into subprograms, subproblems can be assigned to different
programmers. This makes it easier for programmers to work in teams.

KEey TERMS

actual parameter 207 method overloading 221
ambiguous invocation 223 method signature 207
argument 207 modifier 207

divide and conquer 227 parameter 207

formal parameter (i.e., parameter) 207 pass-by-value 214
information hiding 227 scope of a variable 224
method 206 stepwise refinement 227

STUDENTS-HUB.cagthod abstraction 227 Uploagied BY: 1210711 @student.birzeit.edu

Chapter Summary 235

CHAPTER SUMMARY

I. Making programs modular and reusable is one of the central goals in software engineer-
ing. Java provides many powerful constructs that help to achieve this goal. Methods are
one such construct.

2. The method header specifies the modifiers, return value type, method name, and param-
eters of the method. The static modifier is used for all the methods in this chapter.

3. A method may return a value. The returnValueType is the data type of the value the
method returns. If the method does not return a value, the returnValueType is the
keyword void.

4. The parameter list refers to the type, order, and number of a method’s parameters.
The method name and the parameter list together constitute the method signature.
Parameters are optional; that is, a method doesn’t need to contain any parameters.

5. A return statement can also be used in a void method for terminating the method and
returning to the method’s caller. This is useful occasionally for circumventing the nor-
mal flow of control in a method.

6. The arguments that are passed to a method should have the same number, type, and
order as the parameters in the method signature.

7. When a program calls a method, program control is transferred to the called method.
A called method returns control to the caller when its return statement is executed, or
when its method-ending closing brace is reached.

8. A value-returning method can also be invoked as a statement in Java. In this case, the
caller simply ignores the return value.

9. A method can be overloaded. This means that two methods can have the same name, as
long as their method parameter lists differ.

10. A variable declared in a method is called a local variable. The scope of a local variable
starts from its declaration and continues to the end of the block that contains the vari-
able. A local variable must be declared and initialized before it is used.

I1. Method abstraction is achieved by separating the use of a method from its implementa-
tion. The client can use a method without knowing how it is implemented. The details
of the implementation are encapsulated in the method and hidden from the client who
invokes the method. This is known as information hiding or encapsulation.

12. Method abstraction modularizes programs in a neat, hierarchical manner. Programs
written as collections of concise methods are easier to write, debug, maintain, and
modify than would otherwise be the case. This writing style also promotes method
reusability.

13. When implementing a large program, use the top-down and/or bottom-up coding ap-
proach. Do not write the entire program at once. This approach may seem to take more
time for coding (because you are repeatedly compiling and running the program), but it
actually saves time and makes debugging easier.

STUDENTS-HUB.com Uploaded By: 1210711 @student.birzeit.edu

236 Chapter 6 Methods

Quiz

Answer the quiz for this chapter online at the Companion Website.

MyProgrammingLab® PROGRAMMING EXERCISES

Note

A common error for the exercises in this chapter is that students don’t implement the
methods to meet the requirements even though the output from the main program
is correct. For an example of this type of error, see liveexample.pearsoncmg.com/etc/
CommonMethodError]ava.pdf.

Sections 6.2-6.9

6.1 (Math: pentagonal numbers) A pentagonal number is defined as n(3n—1)/2 for
n =1,2, ..., and so on. Therefore, the first few numbers are 1, 5, 12, 22,
Write a method with the following header that returns a pentagonal number:

public static int getPentagonalNumber (int n)

For example, getPentagonalNumber (1) returns 1 and getPentagonalNum-
ber (2) returns 5. Write a test program that uses this method to display the first
100 pentagonal numbers with 10 numbers on each line. Use the %7d format to
display each number.

*6.2 (Sum the digits in an integer) Write a method that computes the sum of the digits
in an integer. Use the following method header:

public static int sumDigits(long n)

For example, sumDigits (234) returns 9 (= 2 + 3 + 4). (Hint: Use the % op-
erator to extract digits and the / operator to remove the extracted digit. For in-
stance, to extract 4 from 234, use 234 % 10 (= 4). To remove 4 from 234, use
234 | 10 (= 23). Use a loop to repeatedly extract and remove the digit until
all the digits are extracted. Write a test program that prompts the user to enter an
integer then displays the sum of all its digits.

**6.3 (Palindrome integer) Write the methods with the following headers:

/| Return the reversal of an integer, e.g., reverse(456) re-
turns 654
public static int reverse(int number)

/1 Return true if number is a palindrome
public static boolean isPalindrome(int number)

Use the reverse method to implement isPalindrome. A number is a palin-
drome if its reversal is the same as itself. Write a test program that prompts the
user to enter an integer and reports whether the integer is a palindrome.

a *6.4 (Display an integer reversed) Write a method with the following header to dis-

VideoNote play an integer in reverse order:

Reverse an integer public static void reverse(int number)

For example, reverse (3456) displays 6543. Write a test program that prompts
the user to enter an integer then displays its reversal.

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

Programming Exercises 237

*6.5 (Sort three numbers) Write a method with the following header to display three
numbers in increasing order:

public static void displaySortedNumbers (
double num1, double num2, double num3)

Write a test program that prompts the user to enter three numbers and invokes the
method to display them in increasing order.

*6.6 (Display patterns) Write a method to display a pattern as follows:

- A

2
32
nn-1 ... 321

The method header is

public static void displayPattern(int n)

Write a test program that prompts the user to enter a number n and invokes dis-
playPattern(n) to display the pattern.

*6.7 (Financial application: compute the future investment value) Write a method that
computes future investment value at a given interest rate for a specified number
of years. The future investment is determined using the formula in Programming
Exercise 2.21.

Use the following method header:

public static double futureInvestmentValue(
double investmentAmount, double monthlyInterestRate,int years)

For example, futurelInvestmentValue (10000, 0.05/12, 5) returns
12833.59.

Write a test program that prompts the user to enter the investment amount (e.g.,
1,000) and the interest rate (e.g., 9%) and prints a table that displays future value
for the years from 1 to 30, as shown below:

The amount invested: 1000 g
Annual interest rate: 9

Years Future Value

1 1093.80

2 1196. 41

29 13467 .25

30 14730.57

6.8 (Conversions between Celsius and Fahrenheit) Write a class that contains the
following two methods:

/** Convert from Celsius to Fahrenheit */
public static double celsiusToFahrenheit(double celsius)

/** Convert from Fahrenheit to Celsius */
public static double fahrenheitToCelsius(double fahrenheit)

STUDENTS-HUB.com Uploaded By: 1210711@student birzeit.edu

238 Chapter 6 Methods

The formula for the conversion is as follows:

fahrenheit = (9.0 / 5) * celsius + 32
celsius = (5.0 / 9) * (fahrenheit - 32)

Write a test program that invokes these methods to display the following table:

Celsius Fahrenheit | Fahrenheit Celsius
10.0 1040 T 120.0 . 18.89
39.0 102.2 | 110.0 43.33
38.0 100.4 | 100.0 37.78
37.0 98.6 | 90.0 32.22
36.0 96.8 | 80.0 26.67
35.0 95.0 | 70.0 21.11
34.0 93.2 | 60.0 21.11
33.0 91.4 | 50.0 10.00
32.0 89.6 | 40.0 4.44
31.0 87.8 | 30.0 -1.11

6.9 (Conversions between feet and meters) Write a class that contains the following
two methods:

/** Convert from feet to meters */
public static double footToMeter (double foot)

/** Convert from meters to feet */
public static double meterToFoot (double meter)

The formula for the conversion is:

meter = 0.305 * foot
foot = 3.279 * meter

Write a test program that invokes these methods to display the following tables:

Feet ___Meters ____ |___Meters ___ Feet _
1.0 0.305 | 20.0 65.574

2.0 0.610 | 25.0 81.967

3.0 0.915 | 30.0 98.361

4.0 1.220 | 35.0 114.754
5.0 1.525 | 40.0 131.148
6.0 1.830 | 45.0 147.541
7.0 2.135 | 50.0 163.934
8.0 2.440 | 55.0 180.328
9.0 2.745 | 60.0 196.721
10.0 3.050 | 65.0 213.115

6.10 (Use the isPrime Method) Listing 6.7, PrimeNumberMethod.java, provides the
isPrime (int number) method for testing whether a number is prime. Use
this method to find the number of prime numbers less than 10000.

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

Programming Exercises 239

6.11 (Financial application: compute commissions) Write a method that computes the
commission, using the scheme in Programming Exercise 5.39. The header of the
method is as follows:

public static double computeCommission(double salesAmount)

Write a test program that displays the following table:

Sales Amount Commission
10000 900.0
15000 1500.0
20000 2100.0
25000 2700.0
30000 3300.0
35000 3900.0
40000 4500.0
45000 5100.0
50000 5700.0
55000 6300.0
60000 6900.0
65000 7500.0
70000 8100.0
75000 8700.0
80000 9300.0
85000 9900.0
90000 10500.0
95000 11100.0
100000 11700.0

6.12 (Display characters) Write a method that prints characters using the following
header:

public static void printChars(char ch1, char ch2, int
numberPerLine)

This method prints the characters between ch1 and ch2 with the specified num-
bers per line. Write a test program that prints 10 characters per line from 1 to Z.
Characters are separated by exactly one space.

*6.13 (Sum series) Write a method to compute the following summation:

2 i
+S+ e+
3 i+ 1

N | =

m(i) =

Write a test program that displays the following table:

i m(i)

1 0.5000
2 1.1667
3 1.9167

STUDENTS-HUB.com Uploaded By: 1210711 @student.birzeit.edu

240 Chapter 6 Methods

*6.14

VideoNote

Estimate o

*6.15

STUDENTS-HUB.com

i m(1i)

4 2.7167

5 3.5500

6 4.4071

7 5.2821

8 6.1710

9 7.0710

10 7.9801

11 8.8968

12 9.8199

13 10.7484
14 11.6818
15 12.6193
16 13.5604
17 14.5049
18 15.4523
19 16.4023
20 17.3546

(Estimate) 7 can be computed using the following summation:

1 1 (_1)i+1>
Fo——F e+
9 11 2i — 1

1

35 7

Write a method that returns m (i) for a given i and write a test program that
displays the following table:

i m(1i)

1 4.0000
101 3.1515
201 3.1466
301 3.1449
401 3.1441
501 3.1436
601 3.1433
701 3.1430
801 3.1428
901 3.1427

(Financial application: print a tax table) Listing 3.5 gives a program to compute
tax. Write a method for computing tax using the following header:

public static double computeTax(int status, double
taxablelIncome)

Use this method to write a program that prints a tax table for taxable income
from $50,000 to $60,000 with intervals of $50 for all the following statuses:

Uploaded By: 1210711@student.birzeit.edu

Programming Exercises 241

Taxable Single Married Joint Married Head of
Income or Qualifying Separate House hold
Widow (er)

50000 8688 6665 8688 7353
50050 8700 6673 8700 7365
50100 8712 6680 8712 7378
50150 8725 6688 8725 7390
59850 11150 8142 11150 9815
59900 11162 8150 11162 9828
59950 11175 8158 11175 9840
60000 11188 8165 11188 9853

Hint: round the tax into integers using Math.round (i.e., Math .round (com-
puteTax(status, taxableIncome))).

*6.16 (Number of days in a year) Write a method that returns the number of days in a
year using the following header:

public static int numberOfDaysInAYear (int year)

Write a test program that displays the number of days in year from 2000 to 2020.

Sections 6.10 and 6.1 1

*6.17 (Display matrix of Os and Is) Write a method that displays an n-by-n matrix
using the following header: Here is a sample run:

public static int printMatrix(int year)

that prompts the user to enter n and displays an n-by-n matrix. Here is a sample run:

n: 3 [Fener] E

public static void printMatrix(int n)

Each element is 0 or 1, which is generated randomly. Write a test program that
prompts the user to enter n and displays an n-by-n matrix.

**6.18 (Check password) Some Websites impose certain rules for passwords. Write a
method that checks whether a string is a valid password. Suppose the password
rules are as follows:

B A password must have at least eight characters.
B A password must contain only letters and digits.
B A password must contain at least two digits.

Write a program that prompts the user to enter a password and displays Valid
Password if the rules are followed, or Invalid Password otherwise.

STUDENTS-HUB.com Uploaded By: 1210711 @student.birzeit.edu

242 Chapter 6 Methods

(Triangles) Implement the following two methods:

/** Return true if the sum of every two sides is
* greater than the third side. */
public static boolean isValid(

double side1, double side2, double side3)

/** Return the area of the triangle. */
public static double area(
double side1, double side2, double side3)

Write a test program that reads three sides for a triangle and uses the isValid
method to test if the input is valid and uses the area method to obtain the area.
The program displays the area if the input is valid. Otherwise, it displays that
the input is invalid. The formula for computing the area of a triangle is given in
Programming Exercise 2.19.

(Count the letters in a string) Write a method that counts the number of letters in
a string using the following header:

public static int countlLetters(String s)

Write a test program that prompts the user to enter a string and displays the num-
ber of letters in the string.

(Phone keypads) The international standard letter/number mapping for tele-
phones is given in Programming Exercise 4.15. Write a method that returns a
number, given an uppercase letter, as follows:

public static int getNumber(char uppercaseletter)

Write a test program that prompts the user to enter a phone number as a string.
The input number may contain letters. The program translates a letter (uppercase
or lowercase) to a digit and leaves all other characters intact. Here are sample
runs of the program:

Enter a string: 1-800-Flowers
1-800-3569377

Enter a string: 1800flowers
18003569377

*6.19
*6.20
*6.21
2
2
**6.22

STUDENTS-HUB.com

(Math: approximate the square root) There are several techniques for imple-
menting the sqrt method in the Math class. One such technique is known as the
Babylonian method. 1t approximates the square root of a number, n, by repeat-
edly performing the calculation using the following formula:

nextGuess = (lastGuess + n / TastGuess) / 2

When nextGuess and lastGuess are almost identical, nextGuess is the
approximated square root. The initial guess can be any positive value (e.g., 1).
This value will be the starting value for TastGuess. If the difference between
nextGuess and TastGuess is less than a very small number, such as 0.0001,
you can claim that nextGuess is the approximated square root of n. If not,
nextGuess becomes TastGuess and the approximation process continues.
Implement the following method that returns the square root of n:

public static double sqrt(long n)

Uploaded By: 1210711@student.birzeit.edu

Programming Exercises 243

Write a test program that prompts the user to enter a positive double value and
displays its square root.

*6.23 (Occurrences of a specified character) Write a method that finds the number of
occurrences of a specified character in a string using the following header:

public static int count(String str, char a)

For example, count ("Welcome™, 'e') returns 2. Write a test program that
prompts the user to enter a string followed by a character then displays the
number of occurrences of the character in the string.

Sections 6.10-6.12

**6.24 (Display current date and time) Listing 2.7, ShowCurrentTime.java, displays the
current time. Revise this example to display the current date and time. The calen-
dar example in Listing 6.12, PrintCalendar.java, should give you some ideas on
how to find the year, month, and day.

**%6.25 (Convert milliseconds to hours, minutes, and seconds) Write a method that con-
verts milliseconds to hours, minutes, and seconds using the following header:

public static String convertMillis(long millis)

The method returns a string as hours:minutes:seconds. For example, con -
vertMil1is(5500) returns a string 0:0:5, convertMil11is(100000)
returns a string 0:1:40, and convertMi11is(555550000) returns a string
154:19:10. Write a test program that prompts the user to enter a long integer
for milliseconds and displays a string in the format of hours:minutes:seconds.

Comprehensive

**%6.26 (Palindromic prime) A palindromic prime is a prime number and also palin-
dromic. For example, 131 is a prime and also a palindromic prime, as are 313
and 757. Write a program that displays the first 100 palindromic prime numbers.
Display 10 numbers per line, separated by exactly one space, as follows:

235711 101 131 151 181 191
313 353 373 383 727 757 787 797 919 929

**6.27 (Emirp) An emirp (prime spelled backward) is a nonpalindromic prime number
whose reversal is also a prime. For example, 17 is a prime and 71 is a prime, so
17 and 71 are emirps. Write a program that displays the first 100 emirps. Display
10 numbers per line, separated by exactly one space, as follows:

13 17 31 37 71 73 79 97 107 113
149 157 167 179 199 311 337 347 359 389

**6.28 (Mersenne prime) A prime number is called a Mersenne prime if it can be written
in the form 27 — 1 for some positive integer p. Write a program that finds all
Mersenne primes with p = 31 and displays the output as follows:

27p - |
3
7
31

a w N|v

STUDENTS-HUB.com Uploaded By: 1210711 @student.birzeit.edu

244 Chapter 6 Methods

*%6.29 (Twin primes) Twin primes are a pair of prime numbers that differ by 2. For
example, 3 and 5 are twin primes, 5 and 7 are twin primes, and 11 and 13 are
twin primes. Write a program to find all twin primes less than 1,000. Display the
output as follows:

(3, 5)
(5, 7)

*%6.30 (Game: craps) Craps is a popular dice game played in casinos. Write a program
to play a variation of the game, as follows:

Roll two dice. Each die has six faces representing values 1, 2, ..., and 6, respec-
tively. Check the sum of the two dice. If the sum is 2, 3, or 12 (called craps), you
lose; if the sum is 7 or 11 (called natural), you win; if the sum is another value
(i.e.,4,5,6,8,9,or 10), a point is established. Continue to roll the dice until either
a 7 or the same point value is rolled. If 7 is rolled, you lose. Otherwise, you win.

Your program acts as a single player. Here are some sample runs.

g You rolled 5 + 6 = 11

You win

E You rolled 1 + 2 = 3

You lose

E You rolled 4 + 4 = 8

point is 8
You rolled 6 + 2 = 8
You win

g You rolled 3 + 2 =5

point is 5
You rolled 2 + 5 =7
You lose

**6.31 (Financial: credit card number validation) Credit card numbers follow certain
patterns. A credit card number must have between 13 and 16 digits. It must start
with
B 4 for Visa cards
m 5 for Master cards
B 37 for American Express cards
B 6 for Discover cards

In 1954, Hans Luhn of IBM proposed an algorithm for validating credit card
numbers. The algorithm is useful to determine whether a card number is entered
correctly, or whether a credit card is scanned correctly by a scanner. Credit card
numbers are generated following this validity check, commonly known as the

STUDENTS-HUB.com Uploaded By: 1210711 @student.birzeit.edu

Programming Exercises 245

Luhn check or the Mod 10 check, which can be described as follows (for illustra-
tion, consider the card number 4388576018402626):

1. Double every second digit from right to left. If doubling of a digit results in a
two-digit number, add up the two digits to get a single-digit number.

4388576018402626

| L2424
2%2=4
4%2=8

1%2=2

6x2=12 (1 +2=23)

5#2=10 (1+0=1)

8x2=16 (1+6=17)
L > 4%2=28

2. Now add all single-digit numbers from Step 1.
4+4+8+2+3+1+7+8=37
3. Add all digits in the odd places from right to left in the card number.
6+6+0+8+0+7+8+3=38
4. Sum the results from Step 2 and Step 3.
37 + 38 =175

5. If the result from Step 4 is divisible by 10, the card number is valid; other-
wise, it is invalid. For example, the number 4388576018402626 is invalid,
but the number 4388576018410707 is valid.

Write a program that prompts the user to enter a credit card number as a Tong
integer. Display whether the number is valid or invalid. Design your program to
use the following methods:

/** Return true if the card number is valid */
public static boolean isValid(long number)

/** Get the result from Step 2 */
public static int sumOfDoubleEvenPlace(long number)

/** Return this number if it is a single digit, otherwise,
* return the sum of the two digits */
public static int getDigit(int number)

/** Return sum of odd-place digits in number */
public static int sumOfOddPlace(long number)

/** Return true if the number d is a prefix for number */
public static boolean prefixMatched(long number, int d)

/** Return the number of digits in d */
public static int getSize(long d)

/** Return the first k number of digits from number. If the
* number of digits in number is less than k, return number. */
public static long getPrefix(long number, int k)

STUDENTS-HUB.com Uploaded By: 1210711 @student.birzeit.edu

246 Chapter 6 Methods

(You may also implement this program by reading the input as a string and pro-
cessing the string to validate the credit card.)

Enter a credit card number as a long integer:

4388576018410707

4388576018410707 is valid

Enter a credit card number as a long integer:

4388576018402626

4388576018402626 is invalid

(Game: chance of winning at craps) Revise Programming Exercise 6.30 to run it
10,000 times and display the number of winning games.

(Current date and time) Invoking System.currentTimeMil11is () returns the
elapsed time in milliseconds since midnight of January 1, 1970. Write a program
that displays the date and time. Here is a sample run:

Current date and time is May 16, 2012 10:34:23

(Print calendar) Programming Exercise 3.21 uses Zeller’s congruence to calcu-
late the day of the week. Simplify Listing 6.12, PrintCalendar.java, using Zeller’s
algorithm to get the start day of the month.

(Geometry: area of a pentagon) The area of a pentagon can be computed using
the following formula:

5% s

T
4 X tan ()
5

Write a method that returns the area of a pentagon using the following header:

Area =

public static double area(double side)

Write a main method that prompts the user to enter the side of a pentagon and
displays its area. Here is a sample run:

Enter the side: 5.5

The area of the pentagon is 52.04444136781625

*%6.32
**6.33
*%6.34
6.35
*6.36

STUDENTS-HUB.com

(Geometry: area of a regular polygon) A regular polygon is an n-sided polygon
in which all sides are of the same length and all angles have the same degree (i.e.,

Uploaded By: 1210711@student.birzeit.edu

Programming Exercises 247

the polygon is both equilateral and equiangular). The formula for computing the
area of a regular polygon is

n X s*

T
4 X tan <>
n

Write a method that returns the area of a regular polygon using the following
header:

Area =

public static double area(int n, double side)

Write a main method that prompts the user to enter the number of sides and the
side of a regular polygon and displays its area. Here is a sample run:

Enter the number of sides: 5 g
Enter the side: 6.5

The area of the polygon is 72.69017017488385

6.37 (Format an integer) Write a method with the following header to format the inte-
ger with the specified width.

public static String format(int number, int width)

The method returns a string for the number with one or more prefix 0s. The size
of the string is the width. For example, format (34, 4) returns 0034 and for -
mat (34, 5) returns 00034. If the number is longer than the width, the method
returns the string representation for the number. For example, format (34, 1)
returns 34.

Write a test program that prompts the user to enter a number and its width, and
displays a string returned by invoking format (number, width).

*6.38 (Generate random characters) Use the methods in RandomCharacter in Listing
6.10 to print 100 uppercase letters then 100 single digits, printing 50 per line.

6.39 (Geometry: point position) Programming Exercise 3.32 shows how to test
whether a point is on the left side of a directed line, on the right, or on the same
line. Write the methods with the following headers:

/** Return true if point (x2, y2) is on the left side of the
* directed 1ine from (x0, y0) to (x1, y1) */

public static boolean 1eftOfTheLine(double x0, double yO,
double x1, double y1, double x2, double y2)

/** Return true if point (x2, y2) is on the same

* Tine from (x0, y0) to (x1, y1) */

public static boolean onTheSamelLine(double x0, double yO,
double x1, double y1, double x2, double y2)

/** Return true if point (x2, y2) is on the

* Tine segment from (x0, y0) to (x1, y1) */

public static boolean onTheLineSegment (double x0, double yO,
double x1, double y1, double x2, double y2)

STUDENTS-HUB.com Uploaded By: 1210711 @student.birzeit.edu

248 Chapter 6 Methods

Write a program that prompts the user to enter the three points for p0, p1, and p2
and displays whether p2 is on the left side of the line from pO0 to p1, right side,
the same line, or on the line segment. Here are some sample runs:

Enter three points for pO, p1, and p2: 1 1 2 2 1.5 1.5
(1.5, 1.5) is on the line segment from (1.0, 1.0) to (2.0, 2.0)

Enter three points for p0, p1, and p2: 112 2 3 3
(3.0, 3.0) is on the same 1ine from (1.0, 1.0) to (2.0, 2.0)

Enter three points for pO, p1, and p2: 1 1 2 2 1 1.5
(1.0, 1.5) is on the left side of the Tline
from (1.0, 1.0) to (2.0, 2.0)

Enter three points for pO, p1, and p2: 1 1 2 2 1 —1
(1.0, -1.0) is on the right side of the line
from (1.0, 1.0) to (2.0, 2.0)

I N

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

