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Structural Requirements

To perform its function of supporting a building in
response to whatever loads may be applied to it, a
structural element/ system must possess four properties:

* it must be capable of achieving a state of equilibrium,
* it must have adequate strength and integrity,
* it must have adequate rigidity, and

it must be stable.
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1- Equilibrium
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= A structure is said to be in static equilibrium if the resultant of the
external forces acting on the body - including the supporting
forces called reactions -is zero.
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Types of Supports
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= Supports can be cIaSS|f|ed mto several basic categories based on
their dominant behavior. These categories are hinges/pins,
rollers/rockers, fixed, or links.

= Supports in reality never provide perfect restraint against
translation or rotation. However, in most cases, each support has
a dominant behavior that can be adequately captured by one of
the idealized supports.




Types of Supports
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Connections (Joints)

= Connections between members in
planar structures by default transfer
two orthogonal forces (i.e., axial and
shear) and moments about the axis
perpendicular to the plane.

= Some connections are specifically
designed to not transfer one of these é_o%gé
internal forces between adjacent
members. In other words, the

shear release/slider

. |
connection releases one of these ==
forces. There are three possible moment release/ . .

internal hinge Typically this

releases, namely a shear % type of
release/slider, a moment L o — ;(;f;:encslon
release/internal hinge, and an axial ) i

V ' transfer
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Stablllty and Statical Determlnacy

" The condltlons of determmacy, mdetermmacy, and |nstab|I|ty of
beams and frames can be stated as follows:

3m + r < 37 + C Structure is statically unstable
3m + r = 37 + C Structure is statically determinate
3m + r > 37 + C Structure is statically indeterminate

where
r = number of support reactions.

C = equations of condition (two equations for one internal roller and
one equation for each internal pin).

m = number of members and j = number of joints.

= Stability and statical determinacy depend upon the structure's

configuration; they are not dependent upon the loads applied to
the structure.
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Statical Determinacy

Example: determine the indeterminacy of the

following
A
hinge hinge
r=5, m=5, j=6, C=2 -> stable and
determinate
_A _A
E = E =

r=4, m=9, C=0, j=8. the
frame is statically
indeterminate to the 7
r=6, m=2, j=3, C=2 indeterminate to degrees.

first degree
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Determinacy and Stability

Example: determine the indeterminacy of the following beam.
r=5, m=4, j=5, C=2 -> Determinate. However, the structure is
unstable.

() (d) (e)
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Reactions

leN l3°'<N fZKN ~* Example: determine the
/ — ‘ reactions of the following

A
e 3m e am o am e am structures

10 KN
10 KN/m
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Internal Forces in Members

" |nternal forces that develop on a

particular cross-section of a structural N <, D =N
member in two dimensions are : axial deformation
1. The normal force or axial force (N), L l
. . . i 74 V
that gives rise to the axial g T ]
deformation. shear deformation

2. The shear force (V) that gives rise to L -
X A’[ ,’ \ 1"4
the shear deformation. | (5

bending deformation

3. The bending moment (M) that gives

rise to the bending deformation. Be Y |

v
= Sign Convention. We will usually follow the sign convention
shown in the figures to indicate the positive internal forces.
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Relations of Load, Shear, And Bending Moment
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= Relations between load and shear /
y
V—(+AV)—wAx =0
\ I | B
av I AV A l'l |. D =
dx  axsodx " |—- s
XD
Vp — Ve = — j wdx = —(area under load curve)
e e
I Ax
pin
L
The slope of the shear diagram is Tl
equal to the distributed force’s \ ¢
value. \1(T 1 M + AM
(- ("\’?.\

]
L»
=

b
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Relations of Load, Shear, And Bending Moment
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= Relations between shear and /
bending moment /

= _==_ = — ~—==- =

Ax
M+AM)—M —-VAx+wAx— =0 \C

2

= lim — = lim

dx Ax—0 Ax Ax—0

dM AM
2

1
V——WAx) =V

xD l‘l',.l_?.'

Mp — M, = f Vdx = (area under shear curve)

XC

o

v

A S

-

| »—

The slope of the moment diagram is \(T

C C’

equal to the value of the shear.
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Drawing SF and BM diagrams

w=w(x) B

W= negatlve mcreasmg
slope = negatlve increasing

(b) \

V = positive decreasing
slope = positive decreasing

M / — Wy
Vp

0

() pe
G D
D
AM = | V(x)dx
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Internal forces

| lzfoKN fOKN fZKN ~* Example: Draw the SF &
T T R BM diagrams for the
e 3m e 3m ol um e 2m ] following structures

10 KN
10 KN/m
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2- Strength

" The requirement for adequate strength is satisfied by ensuring
that the stress levels that occur in a structure's various elements,
when the peak loads are applied, are within acceptable limits.

- —

bo, > oy Where:
® is the safety factor

0,, is material strength
0, is stress due to loads

* This is chiefly a matter of providing elements with cross-sections
of adequate size, given the strength of the constituent material.
= Each material has its unique mechanical properties, including

strength. In some materials, strength varies for different types of
internal forces.
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Axlial stress and strain

For a Constant Load and Cross-Sectional Area:

. P . .
e Axial Stress: o0 = e where A is the cross-sectional area
P
. . AL /779
* Axial Strain: € = = I M .
|| P ]
: & 5.0 | i
* Hook'slaw o = Ee o8 I
PL 8|+2 ||
- AL = — EIZ2 || |
AE S O | | ﬂ ¥ )
(=) || o o P,
E: Modulus of elasticity _l_ : l I %
e b ) s i b
 —
. . 45 ﬁ |
" To design axially loaded 5c M s
member J;,L /
y Force P I
Required ™ Allowable stress o,y ;
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Bending stress and strain in Beams

e E—

Loads

Maximum compressive stress \ 4 VC st \ 4 \ 4 |
N ompression Neutra
OCmax / axis
1 T Tension
[ o
c [
h I}' I." ¥ :
._.J(._._NA S | i NN, | MO, Bending
Moment
C
'
o
« — b— tmax N\

Maximum tensile stress

(a) Cross section (b) Stress distribution diagram

[ |
Flexure Formula Force distribution

My Mc | within beam

0, — ) —
y I ) max I

———q

|: the section’g Usg&gnd moment of area
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Sheer stress

_Ve

T

 t=the shear stressin the member at
the point located at a distance y’
from the neutral axis.

 V =theinternal resultant shear
force.

| =the moment of inertia of the
entire cross-sectional area

* t=the width of the member’s cross-
sectional area, measured at the
point where t is to be determined

Q=54

Ead
2%

g:érgf "
vare

o

! max
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Torsional stress and strain

Angle of Twist for Constant Torque and
Cross-Sectional Area is determined from

TL
0 = G
t = the shear stress in the member at the
point located at a distance p from the
center.
T =The applied torque.

J = Polar moment of inertia
G = shear modulus of the material
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= The serviceability of the building is its
fitness for use that extends beyond
strength considerations. The structure
could be strong enough to carry the
required loads but the building function
still be impaired if the deflection limits

are exceeded.

S —

= Building codes usually propose certain deflection limits such as

those shown in the table be

OW.

Type of member

Deflection to be considered

Deflection limitation

Flat roofs not supporting or attached to nonstructural elements

liely fo be damaged by large deflections Immediate deflection due to live load L £/180
Floors not supporting or attached to nonstructural elements : : ;

liely to be damaged by large deflections Immediate deflection due to live load L £/360
elements likely to be damaged by large deflections of nonstructural slements (sum of the long-term -
Roof or floor construction supporting or attached to nonstructural | deflection due to all sustained loads and the immediate 112405

elements not likely to be damaged by large deflections

deflection due to any additional live load)
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Serviceability - Rigidity

To insure the fulfilment of the serviceability requirement the
determination of the member sizes is carried out either by using
geometric rules (such as minimum ratios of span to depth for beams
as shown in the table) or by deflection calculations

MinimumThickness of Beams and One-way Slabs

simply one end both ends
supported | continuous | continuous
Members not supporting or attached to partitions or
Member other construction likely to be damaged by large
deflections

Solid one-way / / / /
slabs Aﬂ A4 A(\' % 0
Beams or

ribbed one-way %(, %3_5 % | %

slabs

Restraint cantilever
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Deflection

= Understanding the displacement behavior of structural systems
is a very important part of understanding how structures

perform.

* The engineer should be able to sketch the anticipated deformed

shape of structures under load before making actual calculations.

= Such a practice provides an appreciation of the behavior of the
structure and provides a qualitative check of the magnitudes and

directions of the computed displacements.
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Sketching Deformed Shapes of Structures
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Sketching Deformed Shapes of Structures
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Sketching Deformed Shapes of Structures
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Elastic Beam Theory

ds'—ds (R+c)do —RdO ¢
E = — = — y i 12
ds Rd0 R ! R
- e
_ 9 and o = M€ =)
e=riand o =—
1 M "
- — = —
R EI
1 d?y/dx? d4y
R 1+(d—y)2 3/ dx?
dx
d’y M
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Elastlc Beam Theory
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Positive curvature region )I("'-u me e curvature region
= — >
concave up concave down

As the second derivative of the elastic curve equals M/EIl, the
moment diagram can be used to plot the deflected shape as
shown above.
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Deflectlon by Double Integratlon

= The equatlons for the sIope (6) and the deflectlon (y) as a
function of x can be developed by solving the second-order
differential equation given before. The solution process for this
equation is straightforward since it can be solved by performing
two successive integrations (i.e., double integration).

y Double integration of the
e slope(60) = f—dx moment equation for each
beam segment produces two
integration constants per
ﬂ —dx segment. This means that we
need an equal number of
boundary conditions to solve
for these unknowns.
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Deflectlon by Double Integratlon

= Example: A cantilever beam is shown with a pomt load belng
applied to its tip. Use the double integration method to find the
equations for the slope and displacement of this beam. Identify
what the displacement and the slope are at the tip of the beam

(point B).

Pé A 3M y P |
[ — D |
l K M(x) = Px — PL g._: ',i: : a,

}—>\ HB

Px 2

! sz+PL +C )d
Y=E1 )\ 2 X b Jax

1 Px3+PLx2+C i
Y= EI\ "6 2 xR
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Deflectlon by Double Integratlon

= —

Evaluate BC: [1 =0 =0

3 WY :
O(x=0) = — (;[m- _L(0) + r:.J %0

= 1 =1

We now use this known value for C in future calculations.
Evaluate BC: vix=0)=40

P 0y L(0) :
=)= — [ L2 2 L 404+ C ) =0
yWx=0) EI( . 5 (0)(0) )

“fa=1
fx) = g (ér: — L\') : D<x<L
. ~ o3 Atx =L
% 2
‘“}‘E(a‘T)- 0<x<I

P (1
0 ¥,
(L)= = ( =L LcL})

Pl CHERY
= EI("ET_HT)_
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4- Geometric Stablllty

= Geometric stablllty is the property WhICh preserves the geometry
of a structure and allows its elements to act together to resist
load.

= Stable systems revert to their original state following a slight

disturbance whereas unstable systems progress to an entirely
new state.

'_+_+_i_+_+j_? Y,

A rectangular frame with four hinges is capable of achieving a state of equilibrium
but is unstable because any slight lateral disturbance to the columns will induce it
to collapse. The frame on the right here is stabilized by the diagonal element
which makes no directcontribution to the resistance=of the gravitational load.



4- Geometric Stability

A rectangular frame can be stabilized by the insertion of

(a) a diagonal element or

(b) arigid diaphragm, or

(c) by the provision of rigid joints. A single rigid joint is in fact
sufficient to provide stability.
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4- Geometric Stability

Reinforced concrete

Masonry wall floor or roof

N

These frames contain the minimum number of braced panels
required for stability.
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4- Geometric Stability

Additional cases of instability

* Long slender structural member subjected to an axial
compressive load can suddenly become unstable (buckle).

* Qverall instability: structure overturning and/ or sliding

Sliding Overturning
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Stability of ‘real’ Structures

- —

e T o -

In practice, the stability of a structure is assured in one of three
ways: Shear walls/stiff core; Cross-bracing; and Rigid joints.

5| O O O & |
Shear Walls. o "‘_"}
* This form of stability is usually used —
in concrete buildings. — [ * 7 7
* Since most buildings have
staircases and many have lift a a g a g
shafts, the walls that surround the {8} Typloal Soor pian of relelorced concrei office bulding
staircases and lift shafts are often
designed and constructed to i : . -
perform thisrole. | X e
 However, distribution of shear - . .
walls in the plan should be studied - [ 7] ser
carefully to avoid irregular =lo o nl=

a rra nge m eE\’tlDENTS—HUB.com Uploaded By: dﬁbﬁ?/nrﬁeoansm plan with shear walls added



Stability of ‘real’ Structures

Cross-bracing
L I e e L L L T 'm
This form of stability is —> |
common in steel-framed —> [ RS
buildings.
0 b == ==

(a) Section through three-storey steel framed building

— — — —

(b) Same section with diagonal bracing added
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Stability of ‘real’ Structures

- —

Rigid joints

A third method of providing lateral stability is simply to make the
joints strong and stiff enough that movement of the beams relative

to the columns is not possible. The black blobs in Fig. indicate stiff
joints.

» . 3 |
» » »
— — —
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Buckling ; -
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= Buckling is characterized by the sudden sideways failure of a
structural member that is subject to high compressive stress,
where the compressive stress at the point of failure is less than
the ultimate compressive stress that the material is able to bear.

g ) S
£ M T M Yy, premesees
5 /
i , p, 3
i J ‘o
tutrgl, oot il e (S i, N | o
= L
Flexural Buckling
Torsional Buckling Flexural-Torsional Buckling
E &

|
=]
L |

deagd f‘/‘:)
1 Y] (
)
‘A-';‘—A i\_
becsnness J H“:D

Local Buckling Distortional Buckling
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Buckling

= Euler's critical load is the compressive load at which a slender

- —

—- =5 = = o =

column will suddenly bend or buckle. It is given by the formula

P =

where

T2E]
(KL)?

P_= Euler's critical load
(longitudinal compression load on

column),

E= Young's modulus of the column

material,

| = minimum area moment of
inertia of the cross section of the
column (second moment of area),
L= unsupported length of column,
K= column effective length factor
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Buckling

= Euler's critical load is the compressive load at which a slender
column will suddenly bend or buckle. It is given by the formula

5 __ Py TWYE
all. =™ 4 7 (KL/7)?

Where:
KL

— : the slenderness ratio.

r

r = /1/A - radius of gyration.

A: the section area.
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i
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Stress versus length of column
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Buckling

= Column bracing in one plane only. When a column is braced in
only one plane, it can buckle in two modes. the column will
buckle in the mode associated with the higher slenderness ratio

(KL/r)

Y
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" |
e "'.--""'-::’I
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X )
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Buckling ‘

Example 1: Determine the critical buckling load for a 50 x 50 mm
steel column that is 4.5 m long and pin-ended. Assume that E =
204,000 N/ mm?.
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Buckling

Example 2: Determine the critical buckling load for a rectangular
columnb= 25mmandd= 100 mm. Assume that L= 4.5 m; pin-
ended; E = 200,000 N/ mm?.

.
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SJ | P, Direction of buckle
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(a) The moment of inertia about  (b) The member can potentially fail {c) Conseguently, the member will
one axis is greater than that by buckling about either axis. The buckle at P_ = t°El /L% in the
about the cther. load required to cause it to buckie moda sh gw"-:; ¥

about the stronger axis, however,
exceeds the load that will cause
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