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Abstract

Every s x s matrix A yields a composition map acting on polynomials on IR®, mapping
p(z) to p(Az). For each n, the polynomials of degree n form an invariant subspace for
this map. Its matrix representation on this subspace relative to the monomial basis gives
a matrix that we denote by A and call a binomial matriz. This paper deals with the
asymptotic behavior of A as n — co. The special case of 2 x 2 matrices A with the
property that A2 = I corresponds to discrete Taylor series and motivated our original
interest in binomial matrices.
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§1. Introduction

This paper deals with the following matrix theoretic construction. We begin with an
s x s matrix A. On the space II(IR?) of all polynomials on IR?, we consider the composition
map C'4 defined by

(Cap)(z) =p(Az), ze€R’,  pell(R’).

For each n € Z, the space H,(IR®) of homogeneous polynomials of degree n on IR? is an
invariant subspace of C4. So there is a d x d matrix A(™ with

d = dim Hy (R®) = (”t:f; 1)

which represents C4 relative to the basis for H,(IR®) given by the monomials
me(x) = 27, acly,, z € R

As usual z = (z1,...,25), a = (1,...,05) € Z%, o] = a1 + -+ - + g, 2% = 2] - -2
and T, := {a: |a| = n}. We refer to this matrix A™ of order d as a binomial matriz.

Our interest in this construction started with the special case s =2, A = B where
1 1
B= [1 _1] |

The matrices B(™ appeared in the work of Haddad [6]. They came from rescaling the
rows and columns of Hermite matrices, which were the object of study in [1, 6, 7]. The
columns of B(™ have the appearance of a discrete Taylor series and therefore we were led
to study their asymptotic behavior as n — oo. It is precisely this issue that concerns us
here. Our goal is to study the properties and obtain the asymptotic behavior of binomial
matrices A for an arbitrary s x s matrix A.

Binomial matrices also appeared in the study of N-widths of Hilbert spaces of holo-
morphic functions on unitarily invariant domains in C*. (We would not be surprised by
earlier appearances.) The eigenvalues of a compact integral operator identify the N-widths,
and invariance reduces the operator to the composition map C4 for an appropriate matrix
A, [8]. In that context, it sufficed to know that when A is diagonalizable with eigenvalues
Al ..., A, the eigenvalues of A™) are the products A%, |o| =n, with A = (A1,..., As).

Later binomial matrices made their presence known in subdivision. A modification
of the de Casteljau subdivision for Bernstein-Bézier curves led to the binomial matrices

corresponding to
1 0 and l—z =z
l—-z =z 0 1

x € [0,1]. This is described in equation (1.71) of [9]. In a subsequent study of the
algebraic properties of B-patches as well as the analysis of B-patch subdivision, binomial
matrices played a central role, [4]. For these reasons they are prominent in [9] where their
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relationship to “blossoming” is explained. Onme attractive property provides a formula

for the elements of A as the permanent of a certain matrix. To obtain A((X"B) with
la| = |B| = n, we form an n x n matrix M from A by first repeating its i-th row «; times,
t=1,2,...,s, and then the j-th column of this n X s matrix 3; times, j =1,2,...,s. We

then have the formula

1
AgLB) = Eper M.

See p. 28 and Theorem 1.3 of [9]. Alternative formulas shall be provided here.
Quite recently binomial matrices were also shown to play a key role in questions related

to multidimensional refinement equations as they arise in wavelet analysis, [2, 3].

§2. A Motivating Example

To motivate our line of investigation we begin with the 2 x 2 matrix
1 1
s- 1], @

The jth row of the corresponding binomial matrices B(™ = (BJ(Z)), J,k=0,1,...,n, is
defined by

ZB(") kak — (214 29)" 7 (21 — 22)7

or equivalently by the equation
ZB(") F=(1-z)(1+2)" 7. (2.2)

These equations yield the special cases

P 1 3 3 1

o= |1 LI po_|1 ¢ 4 po— |l 1 -1 -1
1 -1 Lo 1 -1 -1 1

1 -3 3 -1

In general, we think of the j-th row of B(™ as a j-th order difference operator. For

example,
1 2 1 To Ty + 221 + T2
1 0 —1 I = o — T9
1 —2 1 ) To — 2.’13‘1 + o

Looking at the columns of the matrices we see discrete polynomials. The k-th column
gives the values at the integers 0, 1,...,n of a polynomial of degree k. For the matrix B(?,
these polynomials are Qo2(z) = 1, Q12(7) = 2 — 2z and Qaa(x) = 1 — 42 + 222, The fact
that the j-th difference of a k-th degree polynomial vanishes for 5 > k confirms that the
squares of these matrices B("™) are zero below the main diagonal. They are also zero above
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the main diagonal! This follows from the fact that B? = 2I, and an exact form of the
discrete polynomials Qg is given in (2.5).

The matrices B(™ have an especially attractive LDU factorization. For example, in
the 3 x 3 case the factors are

10 0 1 00 1 21
L=|11 0|, D=|0o -2 o|, U=|0 1 1
1 21 0 0 4 00 1

In general, we consider the (n + 1) x (n + 1) lower triangular Pascal matrix L defined by

ij:<']1)7 Jk=0,1,...,n,

and the upper triangular matrix U obtained by permuting the rows and columns of L:

o _(n—7J —
UJk_(n—k)’ _],k‘—(),l,...,’n,

Theorem 2.1. Let D be the (n+ 1) x (n + 1) diagonal matrix diag{1,—-2,...,(—2)"}.
There holds the formula
B™ = LDU. (2.3)

Proof. For 5,k =0,1,...,n, we have that

wov), = (1) 2 (1 24)
and thus . oo
S o(ou),et =323 (1) 2 (124

Interchanging the indices k£ and [ establishes that

n J .
Z(LDU :Z< ) —2) {Z(n_ )mk_l}:vl
k=0 1=0
J .
= Z ( ) M1 4 )"
=0
=(1—a)/(1+z)"7,
thereby confirming Theorem 2.1. ]

We inject here some general remarks about binomial matrices. The mapping A —
A(™) is a homomorphism, that is, for any s x s matrices A and N we have that

(AN)® — A N ).
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This fact implies several results. For example, knowing the LDU factorization of a matrix
A will yield the factorization for A(™) (with due attention to the partial order of T',,). Thus,

noting that
1 0f |1 o1 1
p=0 90 2] o 1]

will give (2.3). Also, the Jordan form of A can be obtained from that for A, see [2, 3

4, 9] for details. Furthermore,
(A = (47

if A is invertible. Whenever A2 = cI for some constant ¢ then (A()2 = ¢”I. We do not
elaborate on these interesting issues as our main concern here is with the behavior of A
as n — 00.

The eigenvalues of B are —/2 and /2. From our general remark about the eigenvalues
of A®™ we conclude that the eigenvalues of B are (v/2)¥(—v2)" %,k =0,1,...,n

The asymptotic behavior of the binomial matrix B(™) as n — oo is more challenging.
Let us begin this analysis with some useful formulas. For j,k = 0,1,...,n, we see from
equation (2.2) that

o1 Con)k
Bg('k) = EP%)(O) = %Qm(g/n) (2.4)

where we define polynomials p;, and Qy, by
Pjn(z) = (1 —z) (1 +2)" 7,

and

Qun(z kz ()H - /IS (L - gfn). (25)

It follows from equation (2.4) that
(n) k i (n—k
By = > (i)(—w(j_i). (2.6)
max{0,j+k—n}<i<min{j,k}
For a fixed k € Z,, we derive from equation (2.5) that

lim Qpn(z) = (v — 1/2)F (2.7)

uniformly in x on every bounded subinterval of IR. Therefore we conclude for any k € Z
that

kU my 3 Lk
Jim max [y Bk — (=) =0 (28)

Motivated by our viewpoint that the B("™) acts as a difference operator we will express
in an alternate manner the asymptotic behavior of B(™. To this end, we define for k =

0,1,...,n, a linear functional on C|0, 1] by setting
Tinf = ZB(") (2.9)
)
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Recall that the modulus of continuity w(f, k) of a function f € C[0, 1] is defined as
w(f, h) ==sup{|f(z +1t) — f(z)|: [t| < h,z,z+t €[0,1]}.

Theorem 2.2. Let k€ Z,, f € C*[0,1] and n > k. We have that

—n 3
(=D P25 T (F) = B (1/2)] < Sw (PP, 1/v/).
Proof. The first step in the proof is to introduce the positive linear functional

k n=k 1/n 1/n .
n —k
Lin(f) = 555 (nj )/ f(%-i—tl-i-"'-i-tk)dtl---dtk.
0 0

=0

We claim for f € C*[0,1] that
(=1)knk2k=nTy f = Lin f®). (2.10)

We give two proofs for this equation. The first follows by substituting equation (2.6)
directly into the definition of Ty,,. Specifically, we have that

=3 () 0 (521 1

S (UG (e}
k k

Next, we recall the formula for divided difference AF f(z) = >0, ;

) (=)=t f(x +ih).
Writing this formula as a multidimensional integral (2.10) follows.

The second proof of the equation (2.10) proceeds differently. For every real p, we
define the function f,(z) = e”®. Their linear combinations are dense in C*[0, 1] as p varies
over IR. Thus it suffices to verify (2.10) for f = f,. A direct computation will confirm this

fact, starting from

k

/n —1\*
Lkn(fp) = 2:_k (1 + ep/n)n—k: (epTl> . (2.11)

To prove the theorem, we consider the monomials mg = 1,m; = z, and mqy = 22.

Differentiating and evaluating (2.11) at p = 0 gives the equations
Lkan = 1, Lknml = m1(1/2) (2.12)

and
3n — 2k

Lknmg = m2(1/2) -+ 12”2

(2.13)
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It is a standard fact that for any nonnegative linear functional L on C[0, 1], whose value
is f(1/2) for every linear function f, there holds for any 6 > 0

L= 2 < (145 w(fio) (2.14)
where
p = Lmgy —my(1/2).

According to (2.13) for L = Ly, we have 4p < n~2 and so choosing § = n~1/2 in (2.14)
proves Theorem 2.2. L]

§3. Asymptotic Behavior of Binomial Matrices

In this section we study the asymptotic behavior of the matrices A™ as n — oo for
an s X s matrix A. Specifically, we consider the sequence of linear functionals

Tanf =Y AL F(B/n)

BeT,

for any f € C(Ag) where Ay is the simplex
Ay={z:z-e=1 ze€Ri}

and e = (1,1,...,1) € R".
Definition 3.1. Let z = (z1,%2,...,25) € R’, s > 1 and k € Z,. The moments of z

are defined by
k a s
]ka($)32 j{: (/3):xﬂﬂ ’ O{€;Z+,
BET

where for 8 = (B4, B2, .., Bs), the multinomials with s > 1 are given by

(5)=5
8) =B

with B! := B1!Bs!- - B5!. (When s = 2, (Z) is denoted by (18]€1> or (é))

Note by the multinomial theorem that Iyo(x) = (x - €)* which is nonzero for z - e # 0.
On the contrary, when z-e = 0 we have that Iy, (z) = 0 whenever |a| < k and Iy (x) = klz®
for |o| = k. To see this we compute for y € R®

Ika T
> Bl ot = @y o), w0
ani )
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Recall the standard notation D for the vector of first derivatives and the notation D¢ =
I1(0/0x;)* for the ay-derivative in the x;-variable of a function, ¢ = 1,2,...,s. Also,
D, =y - D is the derivative in the “direction” y and for any finite subset K of IR® we let

Dk = HyEKDy

(empty products are set equal to I).
We denote the row vectors of A as a',a?,...,a®. In what follows it will be important
to identify the indices in G = {j : 1 < j < s} for which a’ - e = 0:

2

J={j:a’ e=0,1<j<s}

We use the following notational convention. When s > 1 and v = (ya,...,7s) € Zi_l with
|7] < n we define o € I's uniquely by setting a; = v;, 1 < i <'s, denote Toy, f by Ty, f and
set |v[a 1= )_,c;7; (empty sums are set equal to zero). From the vector v and the matrix
A we form the set H” consisting of the vectors af, £ € J each repeated v,-times and the
constant

py = ey g(at - )7

Theorem 3.2. If A is an s X s matrix, s > 1, such that a' -e # 0, v € Zi__l and
f e CM(A,), then

n|’Y|A

al
i =) ()

n—00 (al . e)"_|’7| al -e

For the proof of this result we first recall from the definition of A(™ that

AG) = 5D* (Calma)) 0).

To evaluate this derivative we use the following fact

Lemma 3.3 [5]. Let p be a polynomial and f € C*®(IR®). For vectors z*,...,z° € R’
we have that

Dgap)(0
p(D){f@" m,....2* )} = ) (Kiz'))()(Daf)(xl-x,...,xs-x), (3.1)
a!
aEZi
where K¢ is the set
Ko .— {fl,,..,mlj...,ggsr..,xi}, a=(ay,...,a;).
a1 M

Proof of Theorem 3.2. We always choose n such that |y| < n and apply Lemma 3.3 to
the functions f = m, and p = mg to obtain that

A = 507 (Calima)) 0) = 55D (11g)0)
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where J¢ is the set

Since
DJa — (Cll . D)Ot1 . ((Ls . D)as

= X ¥ mL () wm]pre

lotl=a1  |o%|=as
we have that
3= 3 (g o) (o) @y R
|0_2|:a2 |G’s|:a_g /8 - ijz (2 g

and so

Tynf = Z (n;w)(al)al

lot|=n—|]
W.Z:% - g::% = [(Zﬁ-) <a9’)“’} f (%)

Our hypothesis on f ensures that

pl
p=0 "

uniformly for a € T',,, 07 € Fo;y7=1,2,...,s.
Let us first consider the case that J = (). In this case we conclude that

1
(al : e)h'_n 'ynf = Nv(Bn—|'y|f) (#) + 0(1)a n — o0

uniformly on the simplex Ag where
B n
BET
is the n-th degree Bernstein polynomial of f on A;. We know for any f € C(A;) that
Bnf=f+ 0(1)

uniformly on A,. This fact allows us to conclude that the result is valid when J = 0.
For J # (}, we have to deal with the fact that

Mcg(al - ) = 0.

9
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To this end, using (3.2) and the equation

1 (= P . (o7
H(ZO’ﬂ.D) = Z Hj=279j! ,

162|+++++16%|=p

with care, we conclude that

o= 5 (") @

lo|=n—|vl|
u Lyes(0)) g (0
(B 3 malao(s) o
p=1 |62|4---+|05|=p ' n
+0(n_|7|)}, n — oo.

To simplify the right-hand side of (3.3) we observe, if £ € J and 0| < ~, then I, (a*) = 0.
Therefore, if
I 1y;09(a?) (a?)

g
then for all £ € J we obtain |#¢| > v,. In partlcular, (3.4) implies that

10> la.

ted

But the range of summation in (3.3) requires that

P
Y[ >p > 104 > |yla
=2

Thus the summands in (3.3) corresponding to p = |y|a require ¢ = 0 for £ ¢ J and
6| = ~y, for £ € J. These facts give the asymptotic formula

MM {(Bn—'yDH’Yf) (af e) +0(1)}, n — 00

n|’Y|A
which proves the result. ]

1

T'ynf =

We specialize this result to the case considered in Theorem 2.2. For the matrix B in
(2.1) we have that e - b1 = 2, e - b> = 0. Therefore, we conclude that G = J = {2} and
py = 1. Following our notational convention Agnﬂ) in this case is identified with B,(:) where
a=(n—k,k)and 8 = (n—j,7). Thus, for the function f defined for (z1,z2) € Ay by
f(x1,29) = g(x2) where g is defined on [0, 1] we see that Ty, f = Tkng. Hence, Theorem
3.2 says, when g € C¥[0, 1] that

nk k k— k
(—=1)F~Pk! 0 11 1
nli)m o Tkng = E Dk —p)! ( — f) (5’ 5) — (_1)kg(k)(§)_

pq,.k—p
=0 0z 0z,

This limit also follows directly from Theorem 2.2.

10
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Corollary 3.4. If A = (A;j), 1,5 = 1,2,...,s, is a matrix such that for some constant
c#0,A2=cl, Ay =1,1<i<sand fcCM(A,) where y = (y3,...,7s) € Z‘j__l, then

al
lim ¢t |’Y|T nf = Dwa( )

n—00

where

Proof. Our hypothesis implies that a*-e = ¢dy;, j = 1,2,...,5. Thus G = J, py, =1 and
the result follows from Theorem 3.2.

The additional complexity of the multivariate case conceals from us an error bound of
the type presented in Theorem 2.2. An improvement of Theorem 3.2 would be desirable.

Our intention now is to provide a multivariate version of equations (2.7) and (2.8).
First, we define the limit polynomial. Starting with an s X s matrix A such that II5_; A;1 #

_I_
a’ j].( j27"" js)’ j 1’2"",5

in IR*"! and define a polynomial Q4 in H, (IR®) by setting for any = = (z1,%2,...,25) €
S
y

~j
Zwa
7j=1

Analogous to our notational convention in Theorem 3.2 we extend every 7y € Zi_l, vl <n
uniquely to a g € I';, and then denote A(n) by A&"J

Theorem 3.5. Let A be an s x s matrix, s > 1, such that II_; A;; # 0. For every
yeZi ! we have that

lim max n_”'paAgZY) - Q4(a/n)| =0

n—oo ael’y,

where
. TTS —Qjy
Pa i= Hj:lAjl

Proof. For the proof of this result we develop yet another formula for the entries of the
matrix A™). Let § = (1,0,...,0) € Z, and o, € I';,. Use the definition of A and the
product rule for differentiation to obtain

oAl = 5 P DBLC4(ma) }(5)

. 1 aj Uj . (3-5)
J 0'-7! Ajl

ol tor=p

11
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To write this sum in the desired form we note the following identity. If ¢1,%9,...,1, 2, J
are nonnegative integers with 1 =4, 4+ --- + 45, then

> G)-()=0) 0

itetis=i

One way to prove this is to check that the sequences appearing in the left and right sides of
(3.6) have the same generating function (1+¢)¢. Now, with (3.6) in hand we return to (3.5)
and sum over the first coordinates of the vectors o!,...,0® and then over the remaining
s —1 coordinates. Since the first coordinate of the vector A;llaj is 1, the sum over the first

coordinates of ol,... 0% is, by specializing (3.6), seen to be 1. Hence we conclude that
—Inl 4 e N e L
pan”MAG = Y ML (@) I (- ).
) B ! n o n
Pl =y

Since we have that

the result follows. ]

Comparing Theorem 3.5 to (2.7) and (2.8) we see, at least in this case, that the
polynomial @, is a shifted monomial. It turns out for s > 2 that such a matrix A is
unique.

Proposition 3.6. If A is an s X s matrix, s > 1, such that A% = cI for some constant
c#0,A;1=1,7=1,2,...,5 and there is an a € IR*~! such that for any v € Zf‘[l there
is a ¢y # 0 such that Qy = cym.(- — a) on A, then either s =2 or

1 0 0
1 =1 -~ 0
A=1|. . . R (3.7)
1 0 - -1
Proof. Our requirement on A means for every k = 1,2,...,s that there are nonzero
constants ¢ such that for all (1, z,...,z5) € R®,
S S
ZAij‘j:Ck :L‘k—akZa:j for k:2,...,s.
j=1 1=1

Thus we conclude for j =1,2,...,sand k =2,...,s that

Ak = c(1 — ag), Ajr = —crag, J # k-

12
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We now use the fact that the matrix F := A2 — cI is zero. The entry Eij; = 0 tells
us that 1 — Y7 ,crar = ¢, while for j = 1,2,...,s, the entry E;; = 0 implies that
1 -3 _ockar +c¢; = 0. Hence for j = 2,...,s, ¢; = —c and }>7_,a; = (c—1)/c.
Likewise for j = 2,...s the entry F;; = 0 gives the equation cja; = 1 — ¢ which implies
a; = (¢ — 1)/c. Therefore we conclude that either s = 2 or ¢ = 1. In the latter case, A
takes the form (3.7). This proves the result. ]

Specializing Corollary 3.4 to the matrix appearing in (3.7) we see that J = G and
ty = 1. Given the function f defined on A; we define F' by setting, for (z1,z2,...,2s) € A

F(xa,...,zs) = f(z1,%2,...,%s)-

Therefore
Dg- f(8) = (~1)"(DF)(0)

and whenever f € CI"l(A,) we have (for the matrix in (3.7)) that

lim nl(-1)MT,, f = (D7 f)(0)

n—00

which, in the spirit of the paper, is a ”discrete Taylor series”.
Acknowledgement. We are grateful to Carl de Boor for helpful discussion concern-
ing the uniqueness in Proposition 3.6, to Say Song Goh for assistance in improving the

presentation of the paper and to Chris Heil for pointing out the appearance of binomial
matrices in [2, 3].

13

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

References

[1] A. N. Akansu, R. A. Haddad, and H. Caglar, The binomial QMF-wavelet transform
for multiresolution signal decomposition, IEEE Trans. Signal Processing 41 (1993),
13-19.

[2] C. Cabrelli, C. Heil, and U. Molter, Accuracy of lattice translates of several multidi-
mensional refinable functions, J. Approx. Theory 95 (1998), 5-52.

[3] C. Cabrelli, C. Heil, and U. Molter, Accuracy of several multidimensional refinable
distributions, J. Fourier Anal. Appl., to appear.

[4] A. S. Cavaretta and C. A. Micchelli, Pyramid patches provide potential polynomial
paradigms, in Mathematical Methods in Computer Aided Geometric Design 1I, T.
Lyche and L.L. Schumaker (eds.), Academic Press, 1992, pp. 69-100.

[5]  W. Dahmen and C. A. Micchelli, Translates of multivariate splines, Linear Algebra
Appl. 52 (1983), 217-234.

6] R.A.Haddad, A class of orthogonal nonrecursive binomial filters, IEEE Trans. Audio
Electroacoust. 19 (1971), 296-304.

[7]  R. A. Haddad and A. N. Akansu, A new orthogonal transform for signal coding,
IEEE Trans. Acoust. Speech Signal Processing 36 (1988), 1404-1411.

[8] C. A. Micchelli, N-width for holomorphic functions on the unit ball in n-space, in
Methods of Functional Analysis in Approximation Theory (Bombay, 1985), C. A.
Micchelli, D. V. Pai and B. V. Limaye (eds.), Birkhduser, Basel-Boston, Mass, 1986,
pp- 195-204.

9] C. A. Micchelli, Mathematical Aspects of Geometric Modeling, STAM, 1995.

14

STUDENTS-HUB.com Uploaded By: Jibreel Bornat


https://students-hub.com

