03/05/2025

Chapter2: MongoDB

Title: Introduction to MongoDB

Subtitle: A NoSQL Database for Modern Applications
Presented by: [Ahmad Hamo]

Date: [3-5-2025]

What is MongoDB?

* Definition: MongoDB is a popular NoSQL database that stores
data in flexible, JSON-like documents.

* Key Features:
— Document-oriented (BSON format).

— Schema-less (flexible data models).
— High performance, scalability, and availability.

— Rich query language and aggregation framework.

STUDENTS-HUB.com 1

https://students-hub.com

03/05/2025

MongoDB Structure

* Document:
— Basic unit (like a row in SQL).

— Stored in BSON (Binary JSON).

— Example from sample mflix.movies:

{

}

" id": ObjectId("573al1390£29313caabcd42e8"),
"title": "The Great Train Robbery",

"year": 1903,

"genres": ["Short", "Western"]

* Collection: Group of documents (e.g., movies).

* Database: Contains multiple collections (e.g., sample mflix).

MongoDB vs. Relational Databases

N G R

Data Model

Schema

Query Language

Scalability

STUDENTS-HUB.com

Documents (BSON)

Flexible (Dynamic)

MongoDB Query Language

Horizontal (Sharding)

Tables (Rows & Columns)

Fixed (Predefined)

saL

Vertical

https://students-hub.com

STUDENTS-HUB.com

MongoDB Terminologies for RDBMS concepts
-

Database
Table, View
Row
Column
Index

Join
Foreign Key
Partition

111 1181

Database

Collection

Document (JSON, BSON)
Field

Index

Embedded Document
Reference

Shard

Why Use MongoDB?

Flexibility: No rigid schema (e.g., add rating to one movie only).

Performance: Optimized for high-speed queries (e.g., find() with filters).

Scalability: Horizontal scaling via sharding.

MongoDB stores

Now-a-days, everyone works with

(Python/Ruby/Java/etc.)

And we need Databases to persist our Then why not store directly ?

Use Cases:

— Real-time analytics (aggregations).

— Content management (flexible documents).

03/05/2025

https://students-hub.com

03/05/2025

N OS QL D Efi n it i ON- Fromwww. nosqgl-database.org

Next Generation Databases mostly addressing some of the points:

¢ non-relational,

o distributed,

¢ open-source and

¢ horizontal scalable.

Often more characteristics apply as:

¢ schema-free,

¢ easy replication support,

¢ simple API,

¢ eventually consistent / BASE (not ACID),
¢ huge data amount, and more.

NoSQL Distinguishing Characteristics

Large data volumes

* Google’s “big data”

Scalable replication and distribution

¢ Potentially thousands of machines
e Potentially distributed around the world

Queries need to return answers quickly

Schema-less
ACID transaction properties are not needed — BASE
CAP Theorem

Open source development

STUDENTS-HUB.com 4

https://students-hub.com

03/05/2025

BASE Transactions

* Acronym contrived to be the opposite of ACID
— Basically Available,
— Soft state,
— Eventually Consistent
* Characteristics
— Weak consistency — stale data OK
— Availability first
— Best effort
— Approximate answers OK
— Aggressive (optimistic)
— Simpler and faster

CAP Theorem

A congruent and logical way for assessing the
problems involved in assuring ACID-like
guarantees in distributed systems is provided by
the CAP theorem

At most two of the following three can be
maximized at one time
* Consistency

— Each client has the same view of the
data

® Availability ' Pick Two
— Each client can always read and write
* Partition tolerance

— System works well across distributed
physical networks

Visual Guide to NoSQL Systems

STUDENTS-HUB.com 5

https://students-hub.com

03/05/2025

CAP Theorem: Two out of Three

* CAP theorem — At most two properties on three can be

addressed

* The choices could be as follows:

1. Availability is compromised but consistency and partition
tolerance are preferred over it

2. The system has little or no partition tolerance. Consistency
and availability are preferred

3. Consistency is compromised but systems are always
available and can work when parts of it are partitioned

MongoDB Demo

show dbs;

use demo;

show collections;

db.books.insertOne({title: "MongoDB",
likes: 100});

db.books.find();

show collections;

show dbs;

db.books.insertMany([{title: "a"},
{name: "b"}]);

STUDENTS-HUB.com

db.books.find();
db.books.find({likes: 100});
db.books.find({likes: {Sgt: 10}});

db.books.updateOne({title: "MongoDB"},
{Sset: { likes: 200 }});

db.books.find();
db.books.deleteOne({title: "a"});
db.books.drop();

show collections;

show dbs;

https://students-hub.com

03/05/2025

Querying Data (Chapter02-Querying-in-MongoDB)

Basic Query
// Find movies released in 1969 (limit to 5
results)
db.movies.find ({"year": 1969}).1imit (5) ;

Filter with Conditions

// Find USA comedies released after 1945
db.movies.find ({

"year": { Sgt: 1945 1},

"countries": "USA",

"genres": "Comedy"

1)

Projection & Sorting (Chapter02-Projection)

// Project only title, countries, and year
(exclude 1d)
db.movies.find (

{ "year": { Sgt: 1945 }, "countries": "USA",
"genres": "Comedy" 1},

{ " id": 0, "title": 1, "countries": 1, "year":
L}

) .sort ({ "year": 1 }).limit (5);

Output Example:

{ "title": "A Comedy Movie", "countries": ["USA"],
"year": 1950 1}

STUDENTS-HUB.com

https://students-hub.com

CRUD Operations in MongoDB

Create (Chapter02-Creating-new-Documents)

// Insert one document
db.movies.insertOne ({

title: "Once upon a time on Moon",
genres: ["Test"],
year: 2024

b

// Insert multiple documents
db.movies.insertMany ([

{ title: "Once upon a time on Mars", genres:
["Test"], year: 2023 1},

{ title: "Tiger Force in Paradise", genres:
"Test"], year: 2019 }

[
1)

Updating Documents (Chapter02-Updating-
Documents)

// Update one document
db.movies.updateOne (

{ genres: "Test" },

{ $set: { "genres.$": "PlaceHolder" } }

) ;

// Update multiple documents (+ increment year)
db.movies.updateMany (
{ "genres": "Test" 1},

{

Sset: { "genres.S$": "PlaceHolder" 1},
Sinc: { "year": 1 }
}
) ;

STUDENTS-HUB.com

03/05/2025

https://students-hub.com

03/05/2025

Deleting Documents (Chapter02-Deleting-Documents)

// Delete all movies with "PlaceHolder"
genre

db.movies.deleteMany ({ genres:
"PlaceHolder" 1});

Note: Use deleteOne () to remove the first matching
document.

Aggregation Framework (Chapter02-
Aggregation Frameworks)
Simple Aggregation

'/ Match comedy movies

db.movies.aggregate([{ Smatch: { "genres": "Comedy" } }1);

Group & Calculate Averages

// Average runtime of comedy movies
db.movies.aggregate ([
{ Smatch: { type: "movie", genres: "Comedy" } 1},
{ Sgroup: { id: null, averageRuntime: { $avg: "Sruntime"
Py
1)
Output:
{ " id": null, "averageRuntime": 98.86 }

STUDENTS-HUB.com

https://students-hub.com

03/05/2025

MongoDB Aggregates

* MongoDB supports complex queries through “aggregates”

* MongoDB aggregates are very much like SQL SELECT queries
— stages — SQL SELECT clause
— pipeline — SQL SELECT statement

» Aggregation

— Aggregations are operations that process data records and return computed results.

* Whatis an Aggregation Pipeline?

— An aggregation pipeline is a series of document transformations which are executed in
stages

MongoDB Aggregates: Example

o {_id:1, cust_id:"a", db.orders.aggregate([
status: "A", amount: 50 } { $match: { status: "A" }},
{ Sgroup: {
e {_id:2, cust_id:"a", _id: "Scust_id",
status: "A", amount: 100 } total: { Ssum: "Samount" },
count: { Ssum: 1}
o {_id:3, cust_id:"c", }
status: "D", amount: 25} 2
{ Ssort: { total: -1} }
e {_id:4,cust id:"d", 1)
status: "C", amount: 125} * Equivalent to SQL SELECT
— Just Smatch is fine, for example
e {_id:5, cust_id:"d", — In Sgroup stage, _id is “group by attributes”

status: "A", amount: 25 }

STUDENTS-HUB.com 10

https://students-hub.com

Pipeline stages:

1. Smatch: { status: "A" } Thisfilters the documents to only those where statusis "A":

{ _id: 1, cust_id: "a", status: "A", amount:
{ _id: 2, cust_id: "a", status: "A", amount:
{ _id: 5, cust_id: "d", status: "A", amount:

2. S$groupstage Group by cust_id, and compute:

— total:sum of amount
— count: count of matching documents per customer
Grouping:
— cust_id: "a" ->total =50+ 100 = 150, count = 2
— cust_id: "d" - total =25, count=1
So the result after grouping:

{ _id: "a", total: 150, count: 2 }

{ _id: "d", total: 25, count: 1 }

3. $sort: { total: -1 } Sortbytotal descending:

Final output:
{ _id: "a", total: 150, count: 2 }
{ _id: "d", total: 25, count: 1 }

Common Aggregate Stages

e Smatch ~ WHERE
* Sgroup ~ GROUP BY
» Ssort ~ ORDER BY
e Slimit =~ FETCH FIRST
* Sproject ~ SELECT

* Sunwind: replicate document per every element in the array
— {Sunwind: lly” }: {”X”: 1’ lly”: [1’ 2] }_> {”X”: 1’ llyll: 1}’ {”X”: 1’ llyll: 2 }

* Slookup: “look up and join” another document based on the attribute value
— {Slookup: { from: <collection to join>, localField: <local join attr>, foreignField: <remote

join attr>, as: <output field name> }}

— Matching documents are returned as an array in <output field name>

STUDENTS-HUB.com

03/05/2025

11

https://students-hub.com

STUDENTS-HUB.com

03/05/2025

More on MongoDB aggregates

Short tutorial: https://studio3t.com/knowledge-
base/articles/mongodb-aggregation-framework/

Reference:
https://docs.mongodb.com/manual/reference/method/db.col
lection.aggregate/

Basic MongoDB Commands (1)

mongo: start MongoDB shell

use <dbName>: use the database

show dbs: show list of databases

show collections: show list of collections
db.colName.drop(): delete "colName" collection
db.dropDatabase(): delete current database

12

https://studio3t.com/knowledge-base/articles/mongodb-aggregation-framework/
https://docs.mongodb.com/manual/reference/method/db.collection.aggregate/
https://students-hub.com

STUDENTS-HUB.com

03/05/2025

Basic MongoDB Commands (2)

CRUD operations

— insertOne(), insertMany()
— findOne(), find()

— updateOne(), updateMany()
— deleteOne(), deleteMany()

Insertion: insertX(doc(s))
— db.books.insertOne({title: "MongoDB", likes: 100})
— db.books.insertMany([{title: "a"}, {title: "b"}])

Basic MongoDB Commands (3)

Retrieval: findX(condition)
— db.books.findOne({likes: 100})
— db.books.find({Sand: [{likes: {Sgte: 10}}, {likes: {Slt: 20}}]})

* Other Boolean/comaprision operators: Sor, Snot, $gt, Sne, ...
Update: updateX(condition, update_operation)
— db.books.updateOne({title: "MongoDB"}, {Sset: {title: "MongoDB II"}})
— db.books.updateMany({title: "MongoDB"}, {Sinc: {likes: 1}})

Other update operators: Smul (multiply), Sunset (remove field), ...

Deletion: deleteX(condition)
— db.books.deleteOne({title: "MongoDB"})
— db.books.deleteMany({likes: {Slt: 100}})

13

https://students-hub.com

STUDENTS-HUB.com

Summary & Next Steps

Key Takeaways:
— Documents > Tables, Collections > Schemas.

— CRUD operations are intuitive (e.g., insertOne (), updateMany ()).

— Aggregations enable complex analytics.

Try It Yourself:
— Use MongoDB Atlas (Free Tier).

— Explore the sample mflix dataset.

Demo Suggestions:
— Run queries live in mongosh or Compass.

— Show the sample mflix dataset (in Atlas).

Emphasize:
— Schema flexibility (e.g., adding rat ing to one document).

— Power of aggregations (e.g., Sgroup for analytics).

03/05/2025

14

https://students-hub.com

