
03/05/2025

1

Chapter2: MongoDB

Title: Introduction to MongoDB
Subtitle: A NoSQL Database for Modern Applications
Presented by: [Ahmad Hamo]
Date: [3-5-2025]

What is MongoDB?
• Definition: MongoDB is a popular NoSQL database that stores

data in flexible, JSON-like documents.

• Key Features:
– Document-oriented (BSON format).

– Schema-less (flexible data models).

– High performance, scalability, and availability.

– Rich query language and aggregation framework.

STUDENTS-HUB.com

https://students-hub.com

03/05/2025

2

MongoDB Structure

• Document:
– Basic unit (like a row in SQL).

– Stored in BSON (Binary JSON).

– Example from sample_mflix.movies:
{

"_id": ObjectId("573a1390f29313caabcd42e8"),
"title": "The Great Train Robbery",
"year": 1903,
"genres": ["Short", "Western"]

}

• Collection: Group of documents (e.g., movies).

• Database: Contains multiple collections (e.g., sample_mflix).

MongoDB vs. Relational Databases

Feature MongoDB (NoSQL) Relational (SQL)

Data Model Documents (BSON) Tables (Rows & Columns)

Schema Flexible (Dynamic) Fixed (Predefined)

Query Language MongoDB Query Language SQL

Scalability Horizontal (Sharding) Vertical

STUDENTS-HUB.com

https://students-hub.com

03/05/2025

3

5

MongoDB Terminologies for RDBMS concepts

RDBMS MongoDB

Database Database

Table, View Collection

Row Document (JSON, BSON)

Column Field

Index Index

Join Embedded Document

Foreign Key Reference

Partition Shard

Why Use MongoDB?
• Flexibility: No rigid schema (e.g., add rating to one movie only).

• Performance: Optimized for high-speed queries (e.g., find() with filters).

• Scalability: Horizontal scaling via sharding.

• MongoDB stores documents (or) objects.

• Now-a-days, everyone works with objects (Python/Ruby/Java/etc.)

• And we need Databases to persist our objects. Then why not store objects directly ?

• Use Cases:

– Real-time analytics (aggregations).

– Content management (flexible documents).

STUDENTS-HUB.com

https://students-hub.com

03/05/2025

4

NoSQL Definition- From www.nosql-database.org

Next Generation Databases mostly addressing some of the points:

• non-relational,

• distributed,

• open-source and

• horizontal scalable.

Often more characteristics apply as:

• schema-free,

• easy replication support,

• simple API,

• eventually consistent / BASE (not ACID),

• huge data amount, and more.

NoSQL Distinguishing Characteristics
Large data volumes

• Google’s “big data”

Scalable replication and distribution

• Potentially thousands of machines

• Potentially distributed around the world

Queries need to return answers quickly

Schema-less

ACID transaction properties are not needed – BASE

CAP Theorem

Open source development

STUDENTS-HUB.com

https://students-hub.com

03/05/2025

5

BASE Transactions

• Acronym contrived to be the opposite of ACID
– Basically Available,
– Soft state,
– Eventually Consistent

• Characteristics
– Weak consistency – stale data OK
– Availability first
– Best effort
– Approximate answers OK
– Aggressive (optimistic)
– Simpler and faster

CAP Theorem
A congruent and logical way for assessing the
problems involved in assuring ACID-like
guarantees in distributed systems is provided by
the CAP theorem
At most two of the following three can be
maximized at one time
• Consistency

– Each client has the same view of the
data

• Availability
– Each client can always read and write

• Partition tolerance
– System works well across distributed

physical networks

STUDENTS-HUB.com

https://students-hub.com

03/05/2025

6

CAP Theorem: Two out of Three

• CAP theorem – At most two properties on three can be
addressed

• The choices could be as follows:

1. Availability is compromised but consistency and partition
tolerance are preferred over it

2. The system has little or no partition tolerance. Consistency
and availability are preferred

3. Consistency is compromised but systems are always
available and can work when parts of it are partitioned

MongoDB Demo

show dbs;
use demo;
show collections;
db.books.insertOne({title: "MongoDB",

likes: 100});
db.books.find();
show collections;
show dbs;
db.books.insertMany([{title: "a"},

{name: "b"}]);

db.books.find();

db.books.find({likes: 100});

db.books.find({likes: {$gt: 10}});

db.books.updateOne({title: "MongoDB"},
{$set: { likes: 200 }});

db.books.find();

db.books.deleteOne({title: "a"});

db.books.drop();

show collections;

show dbs;

STUDENTS-HUB.com

https://students-hub.com

03/05/2025

7

Querying Data (Chapter02-Querying-in-MongoDB)

Basic Query

// Find movies released in 1969 (limit to 5

results)

db.movies.find({"year": 1969}).limit(5);

Filter with Conditions

// Find USA comedies released after 1945

db.movies.find({

"year": { $gt: 1945 },

"countries": "USA",

"genres": "Comedy"

});

Projection & Sorting (Chapter02-Projection)

// Project only title, countries, and year
(exclude _id)
db.movies.find(
{ "year": { $gt: 1945 }, "countries": "USA",

"genres": "Comedy" },
{ "_id": 0, "title": 1, "countries": 1, "year":

1 }
).sort({ "year": 1 }).limit(5);

Output Example:
{ "title": "A Comedy Movie", "countries": ["USA"],
"year": 1950 }

STUDENTS-HUB.com

https://students-hub.com

03/05/2025

8

CRUD Operations in MongoDB
Create (Chapter02-Creating-new-Documents)

// Insert one document
db.movies.insertOne({
title: "Once upon a time on Moon",
genres: ["Test"],
year: 2024

});

// Insert multiple documents
db.movies.insertMany([
{ title: "Once upon a time on Mars", genres:

["Test"], year: 2023 },
{ title: "Tiger Force in Paradise", genres:

["Test"], year: 2019 }
]);

Updating Documents (Chapter02-Updating-
Documents)

// Update one document
db.movies.updateOne(
{ genres: "Test" },
{ $set: { "genres.$": "PlaceHolder" } }

);

// Update multiple documents (+ increment year)
db.movies.updateMany(
{ "genres": "Test" },
{

$set: { "genres.$": "PlaceHolder" },
$inc: { "year": 1 }

}
);

STUDENTS-HUB.com

https://students-hub.com

03/05/2025

9

Deleting Documents (Chapter02-Deleting-Documents)

// Delete all movies with "PlaceHolder"

genre

db.movies.deleteMany({ genres:

"PlaceHolder" });

Note: Use deleteOne() to remove the first matching
document.

Aggregation Framework (Chapter02-
Aggregation_Frameworks)

Simple Aggregation
// Match comedy movies
db.movies.aggregate([{ $match: { "genres": "Comedy" } }]);

Group & Calculate Averages
// Average runtime of comedy movies
db.movies.aggregate([

{ $match: { type: "movie", genres: "Comedy" } },
{ $group: { _id: null, averageRuntime: { $avg: "$runtime"

} } }
]);

Output:
{ "_id": null, "averageRuntime": 98.86 }

STUDENTS-HUB.com

https://students-hub.com

03/05/2025

10

MongoDB Aggregates

• MongoDB supports complex queries through “aggregates”

• MongoDB aggregates are very much like SQL SELECT queries
– stages – SQL SELECT clause

– pipeline – SQL SELECT statement

• Aggregation
– Aggregations are operations that process data records and return computed results.

• What is an Aggregation Pipeline?
– An aggregation pipeline is a series of document transformations which are executed in

stages

MongoDB Aggregates: Example

• { _id: 1, cust_id: "a",
status: "A", amount: 50 }

• { _id: 2, cust_id: "a",
status: "A", amount: 100 }

• { _id: 3, cust_id: "c",
status: "D", amount: 25 }

• { _id: 4, cust_id: "d",
status: "C", amount: 125 }

• { _id: 5, cust_id: "d",
status: "A", amount: 25 }

db.orders.aggregate([
{ $match: { status: "A" } },
{ $group: {

_id: "$cust_id",
total: { $sum: "$amount" },
count: { $sum: 1 }

}
},
{ $sort: { total: -1 } }

])
• Equivalent to SQL SELECT

– Just $match is fine, for example
– In $group stage, _id is “group by attributes”

STUDENTS-HUB.com

https://students-hub.com

03/05/2025

11

Pipeline stages:

1. $match: { status: "A" } This filters the documents to only those where status is "A":
{ _id: 1, cust_id: "a", status: "A", amount: 50 }
{ _id: 2, cust_id: "a", status: "A", amount: 100 }
{ _id: 5, cust_id: "d", status: "A", amount: 25 }

2. $group stage Group by cust_id, and compute:
– total: sum of amount
– count: count of matching documents per customer
Grouping:
– cust_id: "a" → total = 50 + 100 = 150, count = 2
– cust_id: "d" → total = 25, count = 1
So the result after grouping:

{ _id: "a", total: 150, count: 2 }
{ _id: "d", total: 25, count: 1 }

3. $sort: { total: -1 } Sort by total descending:
Final output:

{ _id: "a", total: 150, count: 2 }
{ _id: "d", total: 25, count: 1 }

Common Aggregate Stages

• $match ≈WHERE
• $group ≈ GROUP BY
• $sort ≈ ORDER BY
• $limit≈ FETCH FIRST
• $project ≈ SELECT
• $unwind: replicate document per every element in the array

– {$unwind: “y” }: {“x”: 1, “y”: [1, 2] } -> {”x”: 1, “y”: 1}, {“x”: 1, “y”: 2 }

• $lookup: “look up and join” another document based on the attribute value
– {$lookup: { from: <collection to join>, localField: <local join attr>, foreignField: <remote

join attr>, as: <output field name> }}
– Matching documents are returned as an array in <output field name>

STUDENTS-HUB.com

https://students-hub.com

03/05/2025

12

More on MongoDB aggregates

• Short tutorial: https://studio3t.com/knowledge-
base/articles/mongodb-aggregation-framework/

• Reference:
https://docs.mongodb.com/manual/reference/method/db.col
lection.aggregate/

Basic MongoDB Commands (1)

• mongo: start MongoDB shell

• use <dbName>: use the database

• show dbs: show list of databases

• show collections: show list of collections

• db.colName.drop(): delete `colName` collection

• db.dropDatabase(): delete current database

STUDENTS-HUB.com

https://studio3t.com/knowledge-base/articles/mongodb-aggregation-framework/
https://docs.mongodb.com/manual/reference/method/db.collection.aggregate/
https://students-hub.com

03/05/2025

13

Basic MongoDB Commands (2)

• CRUD operations

– insertOne(), insertMany()

– findOne(), find()

– updateOne(), updateMany()

– deleteOne(), deleteMany()

• Insertion: insertX(doc(s))

– db.books.insertOne({title: "MongoDB", likes: 100})

– db.books.insertMany([{title: "a"}, {title: "b"}])

Basic MongoDB Commands (3)

• Retrieval: findX(condition)
– db.books.findOne({likes: 100})
– db.books.find({$and: [{likes: {$gte: 10}}, {likes: {$lt: 20}}]})

• Other Boolean/comaprision operators: $or, $not, $gt, $ne, …

• Update: updateX(condition, update_operation)
– db.books.updateOne({title: "MongoDB"}, {$set: {title: "MongoDB II"}})
– db.books.updateMany({title: "MongoDB"}, {$inc: {likes: 1}})

• Other update operators: $mul (multiply), $unset (remove field), …

• Deletion: deleteX(condition)
– db.books.deleteOne({title: "MongoDB"})
– db.books.deleteMany({likes: {$lt: 100}})

STUDENTS-HUB.com

https://students-hub.com

03/05/2025

14

Summary & Next Steps

• Key Takeaways:
– Documents > Tables, Collections > Schemas.

– CRUD operations are intuitive (e.g., insertOne(), updateMany()).

– Aggregations enable complex analytics.

• Try It Yourself:
– Use MongoDB Atlas (Free Tier).

– Explore the sample_mflix dataset.

• Demo Suggestions:

– Run queries live in mongosh or Compass.

– Show the sample_mflix dataset (in Atlas).

• Emphasize:

– Schema flexibility (e.g., adding rating to one document).

– Power of aggregations (e.g., $group for analytics).

STUDENTS-HUB.com

https://students-hub.com

