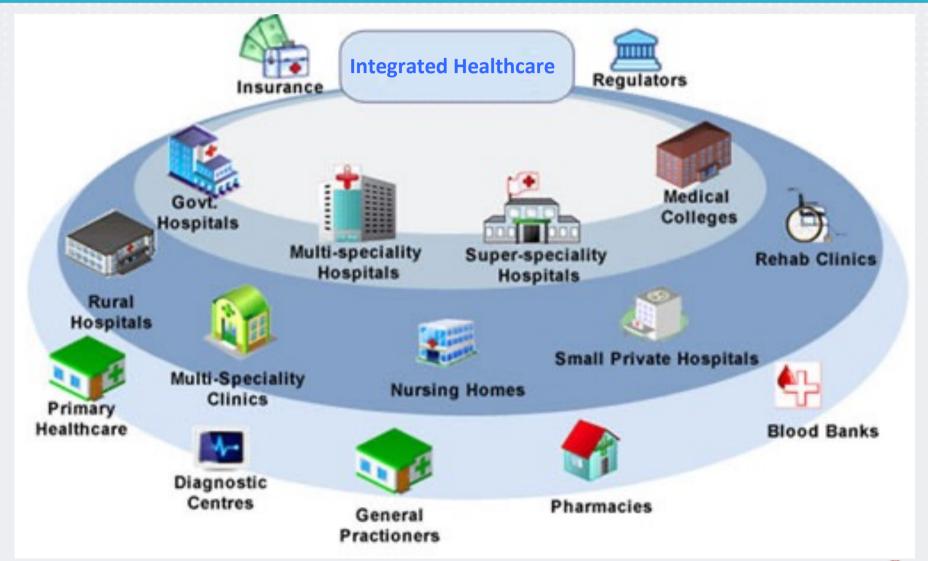
COMP3342: Health Systems Interoperability and Integration

Introduction

Time: Monday+ Wednesday: 14:00-15:20 Location: Masri304

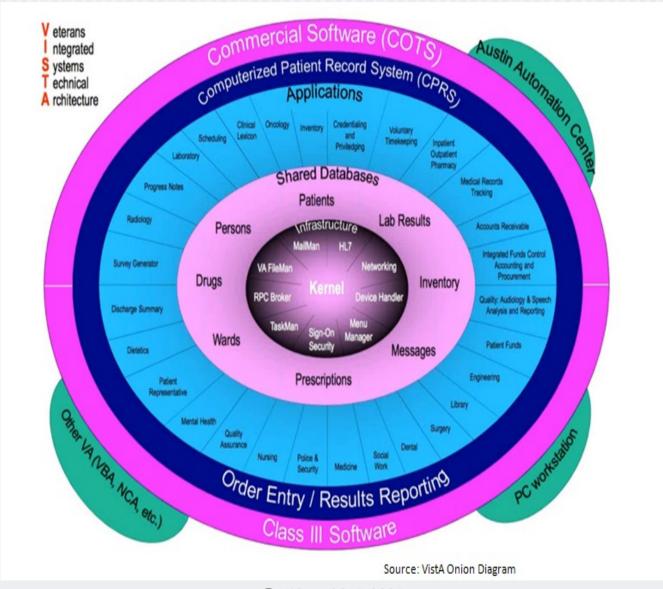
Section: 1


Prof Adel Taweel Birzeit University

Systems Interoperability and Integration

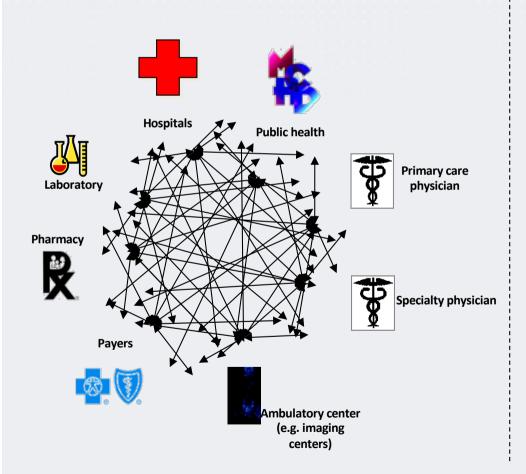
- Introduction and Core Concepts
- Motivation
- Levels of Health Systems Integration
- Healthcare Integration
- Types of Health Integration/Interoperability Standards

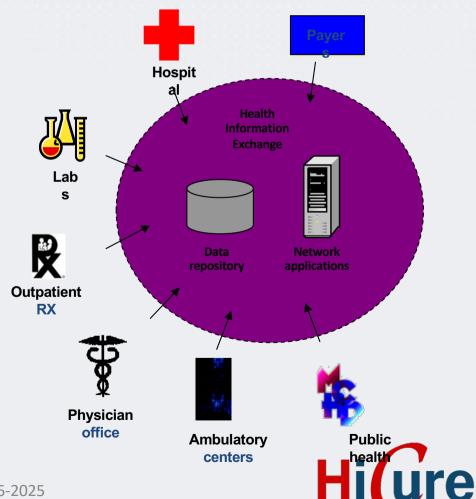
Health Informatics in Healthcare


Health Information Systems' Collaboration: within an organisation

- Effective collaboration requires sharing of knowledge and exchange of information.
- To succeed, it requires a multidisciplinary approach, with systems that can work in:
 - a complex healthcare organizations environment
 - diverse and complex patient populations.

http://hitinfrastructure.com/news/clinical-communication-collaboration-key-for-hit-systems


Open Source EHR System Example: VistA



Integrated Healthcare: Disconnected data!

Current system fragments patient information and creates **redundant**, **inefficient** efforts

Future system will consolidate information and provide a foundation for **unifying** efforts

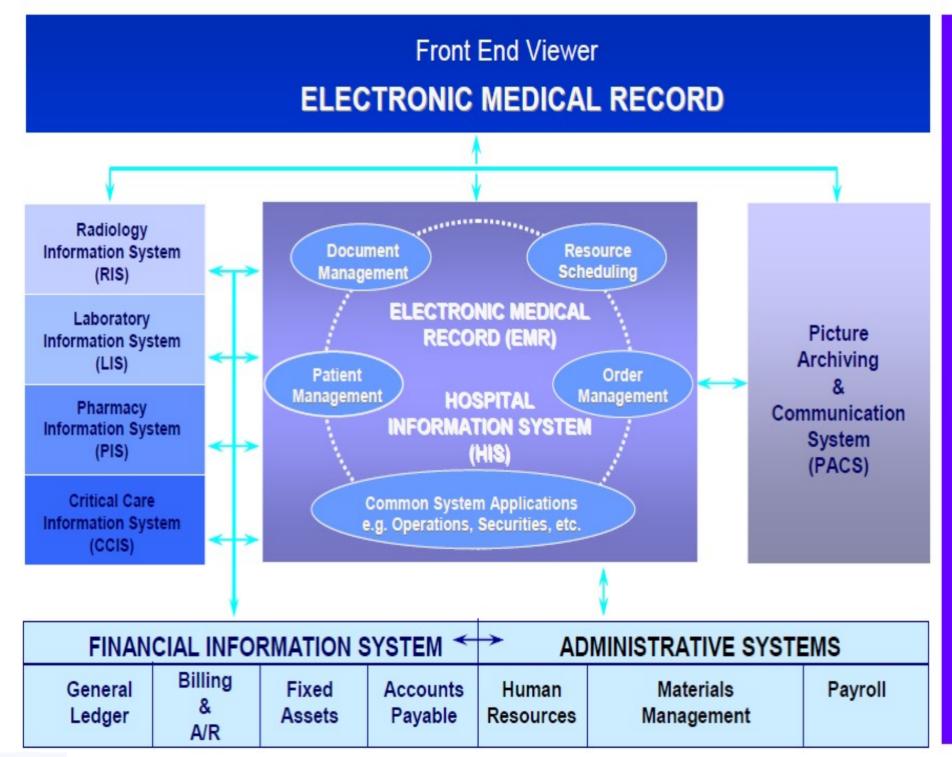
Electronic Health Records (EHR) Land escape

Source: Eurorec

EHR System objectives

The EHR should enable the <u>consistent</u> capture, processing, retention, protection and communication of health information such that <u>interoperability</u> is achieved in support of <u>shared care</u>, <u>improved quality of care</u>, <u>effective resource management</u>, providing evidence of actions taken in health(care), and in support of the uses of <u>anonymized</u> information for health system management.

[ISO 18308]



EHR System objectives...

The EHR should enable the communication (or exchange) of ALL health information between care settings, subject to appropriate consent and access rights, to a sufficient quality to support safe shared clinical care.

[ISO 18308]

Why share Medical Data?

- Increases patient safety
- Lowers Healthcare costs
- Allows for coordination of care
- Increases communication between providers

=> Slightly similar to a Banking analogy of providing banking services in multiple branches

Teaching method

- Lectures (~3hrs per week)
- Independent Student Reading
- Practical work: (+ Group project)
- Tutorials/Case study discussion (in lectures)

Course Assessment				
• Assignment+ Presentation	15%			
Midterm	25%			
 Project+ Presentation 	30%			
• Final	30%			
 In-Class Exercises 	Bonus (if not online!)			

Recommended Course Textbooks

- Tim Benson, Grahame Grieve (2016). Principles of Health Interoperability: SNOMED CT, HL7 and FHIR (Health Information Technology Standards), 3rd ed. 2016 Edition
- Oemig, F., & Snelick, R. (2016). **Healthcare interoperability standards compliance handbook**. *Cham, The Netherlands: Springer International Publishing*.
- Health Information and Quality Authority, Overview of Healthcare Interoperability Standards, https://www.hiqa.ie/sites/default/files/2017-01/Healthcare-Interoperability-Standards.pdf

Health Informatics

Levels of integration

How to define "integrated healthcare"?

Shareable EHR with HISs

Sharing of HISs information must be at multiple levels:

At institution level

• A healthcare institution must be able to share patients' information generated by *its HISs*

At national level

• A healthcare institution must be able to share patients' information generated by other *national healthcare institutions* (i.e., Hospitals, Medical Lab centers, Doctors' clinics)

At international level

• A healthcare institution must be able to share patients' information generated by other *international healthcare institutions*

Shareable EHR with HISs

- Not all healthcare institutions (i.e., doctors' clinics, healthcare and radiology centres, medical labs, hospitals, etc.) adopt sharable EHR
- The "meaningful use" of EHR requires healthcare institutions to share information that is generated and managed by HISs

Models of Integrated Healthcare (or EHR Adoption)

- Model-1: Waegeman's Model of EHR development
 - Defined first in 1996
 - Redefined in 2002

 Model-2: The Healthcare Information and Management Systems Society (HiMSS) Model of EHR Adoption

Five Levels of Electronic Health Records: Waegeman's Levels 1996

information systems)

Five Levels of EHRs: Waegeman's Levels refined in 2002

		EPR-EHCR		
				EHR
			EPR	Contains all possible health relevant data
Electronic Patient Data			Contains all disease	of a person, includes e.g. wellness, food- related and other
		EMR Digital medical record incl. data	relevant data of a patient, can be established beyond an institution (regional), exceed the framework of documentation duty within a medical record, longitudinal projection, e.g. telemedicine, information systems research data networks.	health related information, always established beyond an institutional framework (regional, national, global), web-based, includes participation of citizen in creating the record
	CMR	management, different views on record enables, digital medical record embedded in IT based organisation support of clinical processes, documents solely IT generated, decision support and interactive guidelines, connection with business and management data		
AMR 50% of information is IT generated,paper- based medical record, some automation in medical documen- tation (Order/Entry, Result Reporting, Communication, Digital Recording)	Digitalisation of medical record by scanning the paper documents and importing digital files, structure and view like paper record, paper-less system, no use of OCR and ICR but pure image system			
Level 1	Level 2	Level 3	Level 4	Level 5

Source: adapted from Waegemann (2002) and Blobel B (2003)³²

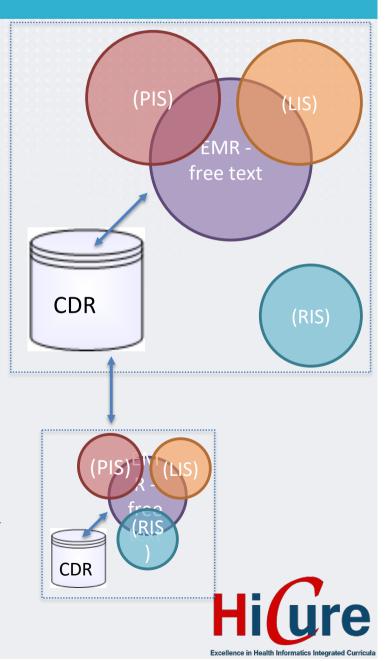
Shareable EHR with HISs

- The Healthcare Information and Management Systems Society (HiMSS) identify an EHR adoption model
 - It consists of eight level stages (0 7) that measures the adoption and utilisation of shared EHR Functions
 - It aims to promote and support healthcare institutions to adopt EHR and integrate it with their HISs

Level (0)

- The organization has NOT installed all of the three key ancillary clinical information systems
 - Laboratory IS
 - Pharmacy IS
 - Radiology IS
- Paper-based records are the only means of storing and accessing <u>clinical</u> information

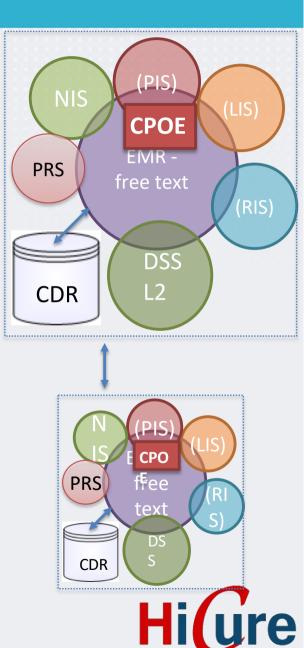
Level (1)


- The organization has installed all of the three key ancillary clinical information systems
 - Laboratory IS
 - Pharmacy IS
 - Radiology IS
- Electronic storage of healthcare notes –
 normally as free text are stored in a
 patient record
- Systems do not communicate

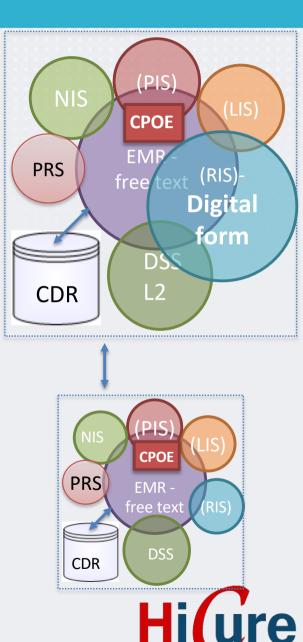
Lab Data- Lab Pharmacy IS (PIS) (LIS) Diagnostic Imaging Radiology (RIS) E Medical Records free text


Level (2)

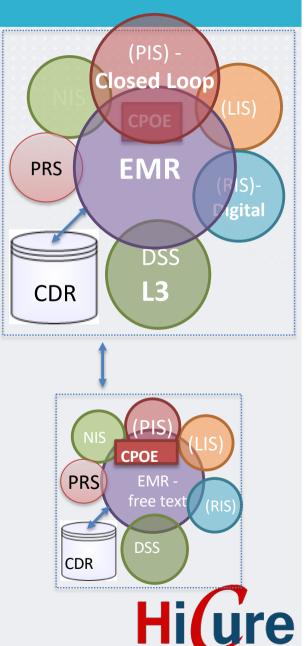
- Major ancillary clinical systems feed data to a clinical data repository (CDR)
 - The CDR provides <u>physician access</u> for reviewing all orders and results.
 - The CDR contains a controlled medical vocabulary, and the clinical decision support/rules engine (CDS) for rudimentary conflict checking.
 - Information from document <u>imaging</u> systems may be linked to the CDR at this stage.
- The hospital may have health information exchange (HIE) capability at this stage and can share (part of) information it has in the CDR with other healthcare providers.


Level (3)

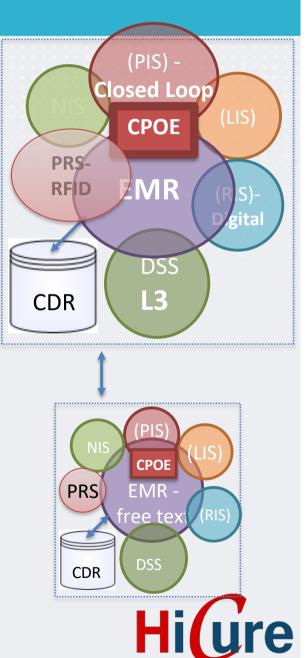
- Nursing/clinical documentation (e.g. vital signs, flow sheets, nursing notes, etc.) is required, implemented and integrated with the CDR
 - Care plan charting is scored with extra points
- The electronic Patient Registration System (PRS) or Patient Master Index system is implemented.
- Medical image access from Radiology information system (RIS) is available for access by physicians <u>outside</u> the Radiology department via the organisation's intranet.


• Level (4)

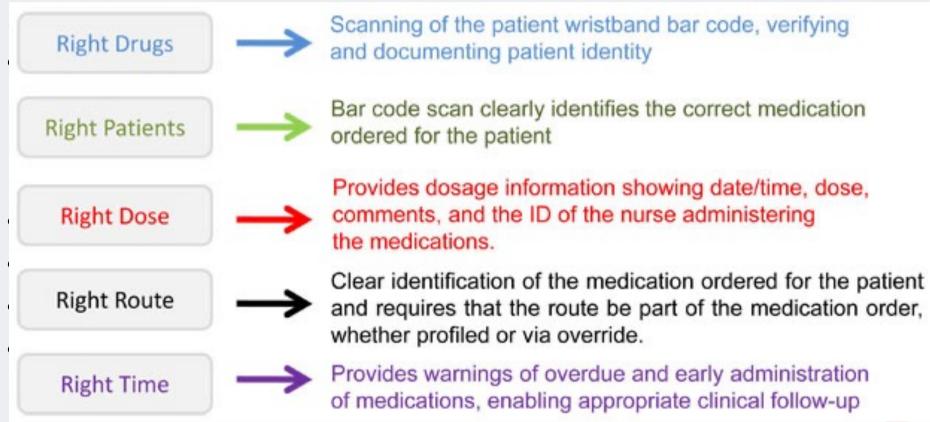
- Computerised Practitioner Order Entry (CPOE) for use by any clinician licensed to create orders is added to the nursing, laboratory, radiology, and CDR environment
- The level two of clinical decision support (DSS)
 capabilities related to evidence-based medicine
 protocols.
- This stage is considered achieved if one inpatient service area has implemented CPOE with physicians entering orders and completed the previous levels (i.e., 1, 2, and 3)


Level (5)

- A full complement of RIS systems
 provides medical images to
 physicians via an intranet and
 communicates all film based images
 to different departments
- Cardiology RIS and document imaging are scored with extra points.

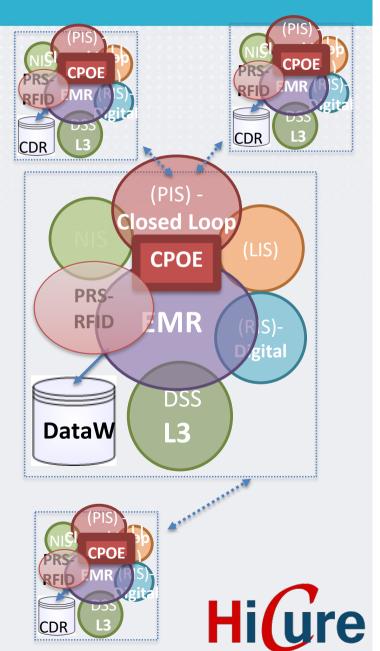

• Level (6)

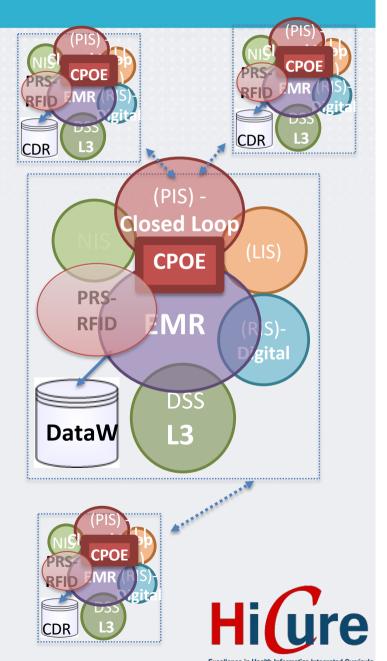
- Full physician documentation with structured templates and discrete data is implemented for: *progress notes, consult notes, discharge summaries or problem list & diagnosis list maintenance.*
- Level three of clinical decision support
 provides guidance for all clinician activities
 related to protocols and outcomes in the
 form of variance & compliance alerts
- The closed loop of medication administration with bar-coded unit dose medications environment is fully implemented

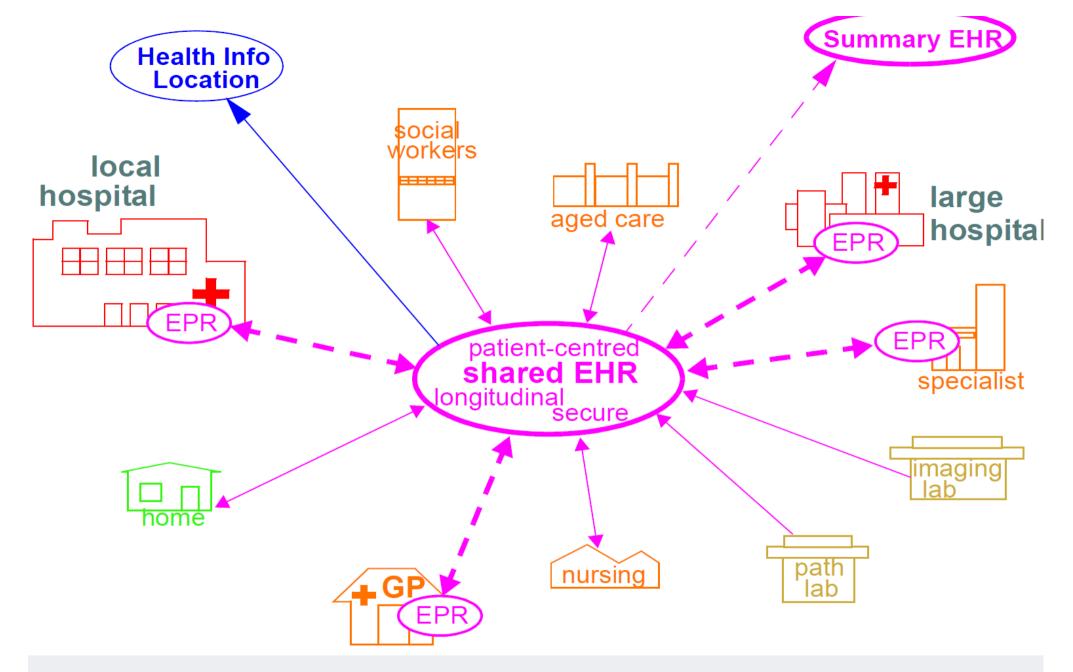

• Level (6) – cont.

- The PRS and <u>bar-coding</u> or other auto identification technology such as radio frequency identification (<u>RFID</u>) are implemented and integrated with CPOE and pharmacy to maximise point of care patient safety processes for medication administration.
- The "*five rights*" of medication administration are <u>verified</u> at the bedside with scanning of the bar-code on the unit does medication and the patient ID.

"five rights" of medication administration


Every registered clinician/nurse is legally responsible for the correct administration of drugs. This includes the five "rights" of administration:


• Level (7)


- The hospital no longer uses <u>paper-based</u> <u>patient</u> record to deliver and manage patient care
- Also, it has a mixture of discrete data, document images, and medical images within its EMR environment.
- Data warehousing is being used to analyze patterns of clinical data to improve quality of care, patient safety, and care delivery efficiency.
- Clinical information can be readily *shared* with all entities that are authorised to treat the patient, or a health information exchange (i.e., other non-associated hospitals, ambulatory clinics, employers, payers and patients in a data sharing environment)

- Level (7) cont.
 - The hospital demonstrates

 summary data continuity (full
 integrated healthcare) for all
 hospital services (e.g., inpatient,
 outpatient, ED, and with any
 owned or managed ambulatory
 clinics).
 - Blood products and human milk are included in the closed-loop medication administration process.

Shared EHR

 $\underline{http://www.openehr.org-05/02/2017}$

Health Informatics

Health care Integration

How to integrate healthcare data?

<Revision>

Why is sharing or exchanging of Clinical Data needed?

- Patients moves!?
 - When a patient moves to another location, their Patient Record should go with them and be immediately useable.
 - Ability to Transfer EMR between independent sites, to allow new clinicians abilities to append to the record
- Care at multiple sites
 - typical in healthcare, patient uses multiple sites
 - A real (or virtual) summary record with real time remote access to patient records
 - for patient referrals
 - Access to specialised consultancy or special healthcare centres
- For health management purposes at organizational or national levels.

EHR data interoperability

- To achieve level (7) of shareable EHR adoption model, EHR data must be *interoperable*.
- EHR *data interoperability* refers to the ability of HISs (that create, exchange and consume EHR data) to have clear shared expectations or understanding about:
 - the contents (its structure and data-model)
 - the context (the circumstances of how it was taken), and
 - the meaning of that data.

Interoperability Versus Integration

Interoperability

Ability of two or more systems or components to exchange (bidirectionally) information [functional interoperability] and to use the information that has been exchanged [semantic interoperability]

[IEEE and HL7]

Data integration

 Ability of bringing data from disparate sources into a common source to provide users with a unified view.

- It "involves combining data residing in different sources and providing users with a unified view" 是—

Maurizio Lenzerini (2002)

Integration

What does Interoperability mean?

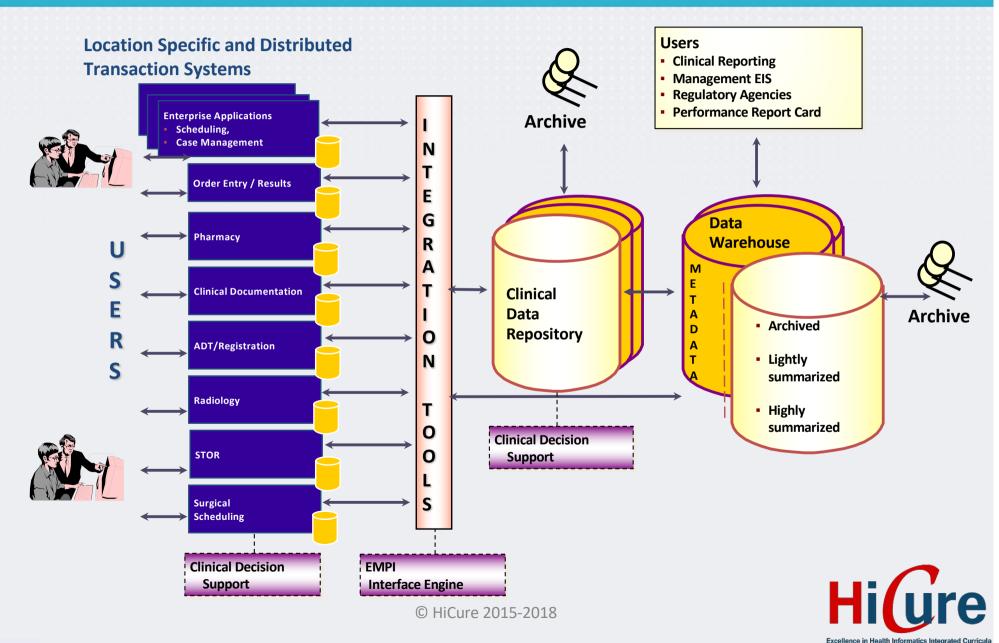
- Main types of interoperability:
 - Morphological and Syntactic interoperability: two systems can interoperate at technical levels, i.e. the two systems can communicate information or knowledge at technical details, including data structure or model.
 - Semantic interoperability: two systems can interoperate at content levels: i.e. the two systems have the same meaning of content (i.e. information) being shared.

EHR data interoperability

- Sharing can occur at multiple levels
 - Human readable form (e.g. free text)
 - Document level sharing (e.g. a structured document)
 - Messages (e.g. a message about specific medical issue, e.g. a lab test/pathology item)
 - Content
 - Document images
 - Free form data
 - Structured data
- Interoperability, to be efficient, should occur in a machine readable form, where machines can communicate, without human intervention.

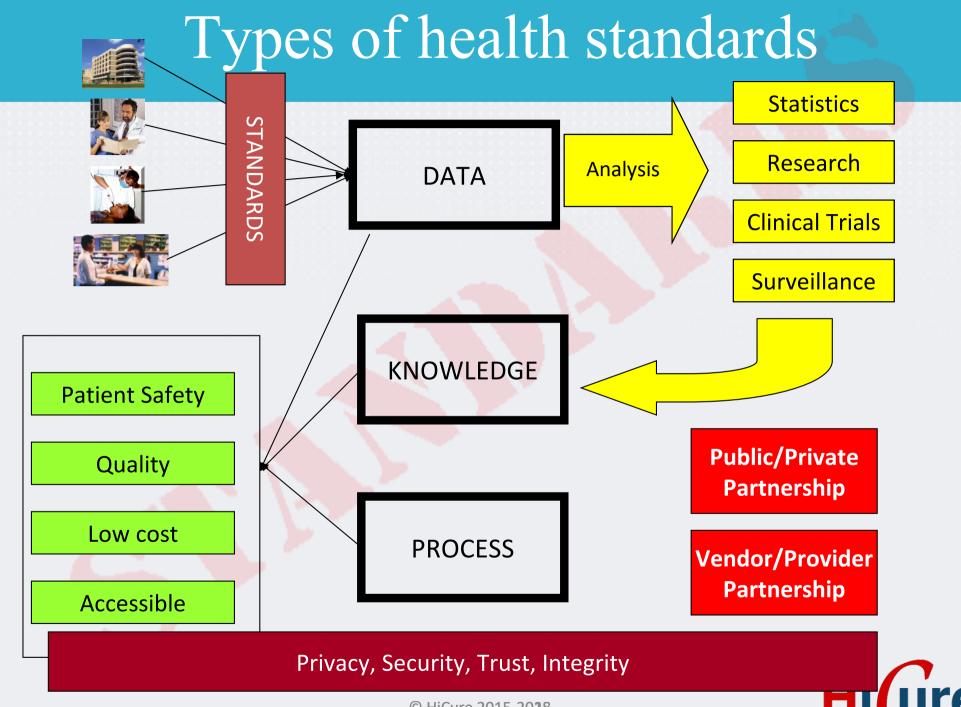
EHR data interoperability

- To achieve a machine readable form
 - Health information systems should have a common (or standard)
 representation or structure (or repository)
 - Health information systems should communicate using a common language & terminologies.
- To achieve, a number of *Health standards* (HS) have been developed and used to achieve EHR data interoperability.
- To automate sharing or exchange of data, <u>health Standards</u> should be represented in a <u>machine readable form</u>, i.e. in a form machines (or computers) can read, process and act upon/make decisions about.



How to achieved Integrated Healthcare?

- To <u>achieve</u> Integrated Healthcare, in which HISs seamlessly communication, standards must be developed to address main types of interoperability:
 - Morphological & Syntactic interoperability: to address, we require standards developed that define an agreeable structure (and representation) of health data,
 - i.e. for health record/data-model, health data exchange/messaging, system/document architecture
 - Semantic interoperability: to address, we require standards developed that define the meaning of health content:
 - i.e. for health terminology, vocabulary or coding standards.


Clinical Systems: Integration

Purpose of Standards

- Maintaining long term, meaningful, comparable, and compatible information on both patient health and care
- Maintaining well defined information structure
 - which allows modular development and expandability of the health information systems
- Achieving flexibility and cost-effective evolution of information systems
 - Both in their design and development and with no information loss
- Can achieve integrated health information environment
- Ensuring security of data and information handling procedures in the systems
- Compatibility of hardware and software applications

© HiCure 2015-2028

Types of Health Standards

1. Medical terminology/vocabulary or coding standards

- Define standard code-sets for generally used concepts, terms, entity names, disease WILL BE COVERED names, procedures, laboratory tests, observations, clinical findings, body structure names, etc.
- e.g. ICD9/10, SNOMED-CT etc.

2. Electronic Health record or Data-model standards

- between modules, and WILL BE COVERED - Define system modules and module structures, the interfaces operations/processes
- openEHR/CEN 13606, etc.

3. Health data exchange or messaging standards

- Provide a comprehensive framework for exchange, integration, sharing, and retrieval of electronic health information
- HL7 v2.x/v3.0,
- ISO/HL7 27931 etc.

Types of Health Standards

4. Architecture or Model-oriented System standards

- Define elements of a health system architecture to support different health functions
- e.g. CDA: Clinical Document Architecture
- e.g. ISO 12967, ISO 10781, ENV 12443, etc.

5. Data formats standards

- Define data formats for different types of health data for laboratory data, medical images
- e.g. DICOM etc.

6. Workflows and Process-oriented standards

- describe the semantics of clinical concepts & processes
 to support continuous care of an individual within an organisation and across organisations
- CEN 13940 etc.

Health Standard Organizations

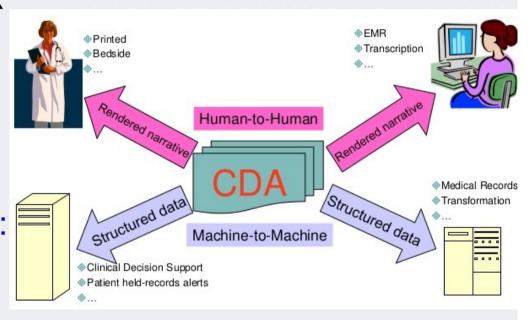
Many **Not-for-profit organisations** are involved in Health Informatics standardisation process including:

- American Society for Testing and Materials (ASTM),
- Healthcare Information and Management Systems Society (HIMSS)
- CEN (European Committee for Standardisation) (e.g. CEN/TC215, CEN 13606)
- ISO (International Standard Organisation) (e.g. ISO/TC215)
- Health Level Seven International (HL7)
- ANSI (American National Standards Institute)
- Institute of Electrical and Electronic Engineers (IEEE)
- World Health Organisation (WHO)
- European Patients Smart Open Services (epSOS)
- GS1 Healthcare
- Digital Imaging and Communications in Medicine (DICOM)

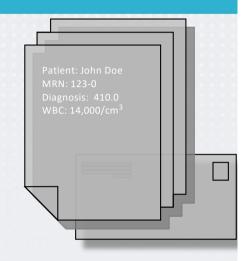
European Conentitive for Standards Constit Européen de Normalisation Européentes Visnolas Sir Norman

Clinical Data Terminology/Vocabulary/Coding Standards

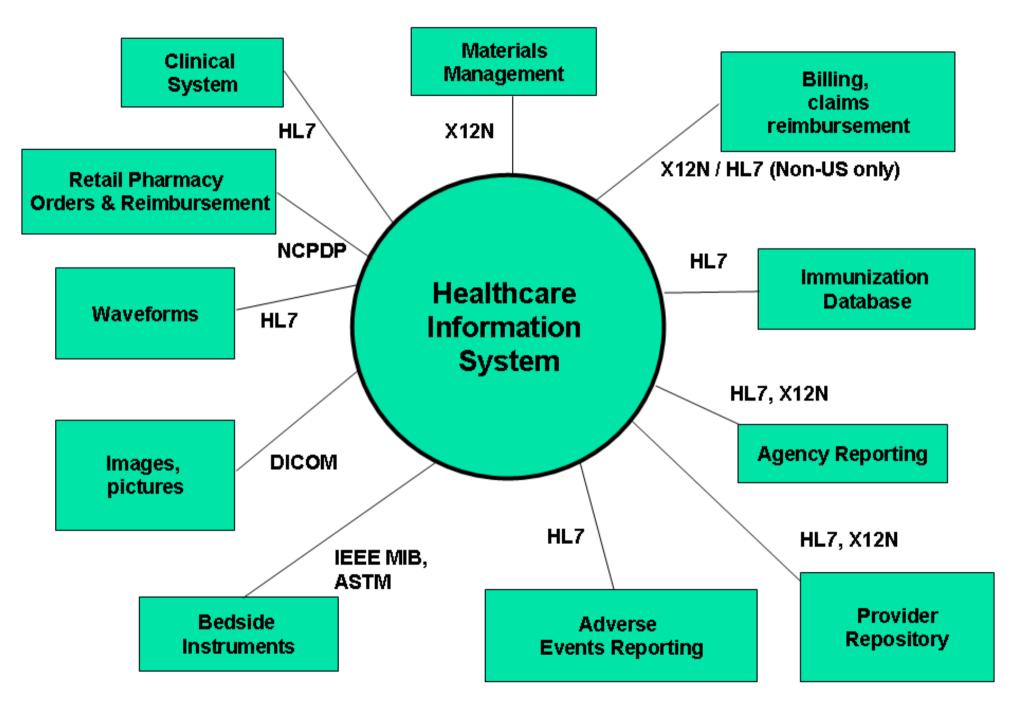
- Controlled Medical Terminology/Vocabulary:
 - ICD9/ICD10 (International Classification of Diseases, ver. 9/ver. 10)
 - SNOMED -CT (Standardized Nomenclature of Medicine, Clinical Terms)
 - LOINC (Logical Observation, Identifiers, Names and Codes) – Lab results
 - RxNorm (normalized naming system for generic and branded drugs)
 - RCT (Read Codes Terms, ver. 2.x, ver. 3.x) specific to the UK
 - NLM UMLS (Unified Medical Language) System): inclusive of all coding systems, and mapping between them


Cumulative Index of Nursing and Allied Health Literature

Clinical Data model and exchange Standards


- Data-model and Architectural standards:
 - openEHR/ CEN 13606 (EHR Model standard)
 - CDA (Clinical Document Architecture)
 - CCR (Continuity Care Records)
- Data Exchange standards:
 - HL7 (Health Level 7, v 2.x, v 3.x)

Clinical Data format and Privacy Standards


- Data Format standards:
 - DICOM (Digital Imaging and Communications in Medicine)- messages for images

- Privacy and Confidentiality:
 - HIPPA (Health Insurance Portability and Accountability Act)

References:

- Nanette B. Sayles, EdD, RHIA, CHPS, CCS, CPHIMS, FAHIMA. *Health Information Management Technology: An Applied Approach*, 4th Edition, 2013
- https://www.healthit.gov, last accessed 01/02/2017
- https://imscdrmba.wordpress.com/206-unit-iii/
- http://www.himss.org/ehr-adoption, last access 01/05/2017
- Strategic Interoperability in Germany, Spain & the UK: The Clinical and Business Imperative for Healthcare Organizations, HIMSS Media 2014.
- https://healthit.ahrq.gov/key-topics/consumer-health-it-applications
- Coiera, E. (2006) .Communication Systems in Healthcare. *Clinical Biochemical Review*, 27(2), 89–98.
 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1579411/

References:

- Hebda, T. & Czar, P. (2013). Handbook of Informatics for Nurses and Healthcare Professionals. (5th Ed.). Pearson Prentice Hall, New Jersey, USA.
- Wager, Karen A. (2013). Health care information systems: a practical approach for health care management (2nd Ed). Jossey-Bass, San Francisco, CA.
- McGonigle, D. & Mastrian. K. (2015). Nursing Informatics and the Foundation of Knowledge (3rd Ed.)
- Australian Health Informatics Education Council. (2013). Health informatics Competences Framework. Retrieved from:
 http://www.healthinformaticscertification.com/wp-content/uploads/2016/02/CHIA-competencies-Framework_FINAL.pdf

References:

- Robin Beaumont. (2011). Types of Health Information Systems. Retrieved from:
 - http://www.floppybunny.org/robin/web/virtualclassroom/chap12/s2/systems1.
 pdf
- Klaus Krickeberg. (2007). Health Information Management Journal, 36(3), 8-20. Retrieved from:
 - http://himaa.org.au/members/journal/HIMJ_36_3_2007/Krickeberg%20Principles%20of%20HIS%20in%20developing%20countries.pdf
- WHO. (2000). Design and implementation of health information systems.
- Amenwerth, E. Graber, S. Herrmann, G. Burkl, T. & Konig, J. (2003). Evaluation of health information systems—problems and challenges. International Journal of Medical Informatics, 71, 125-135.

Thanks! Any questions?

You can find me at:

Email: @ritaj