
Electron Transport Chain & Oxidative Phosphorylation

Electron Transport Chain & Oxidative Phosphorylation

- The third stage of cellular respiration.
- NADH resulting from TCA cycle activity can be used:
- 1. For reductive biosynthesis.
- 2. To supply the energy for ATP synthesis via

oxidative phosphorylation.

Redox reactions

Coupled Redox Reaction

involve the transfer of electrons from one chemical species to another.

e.g.

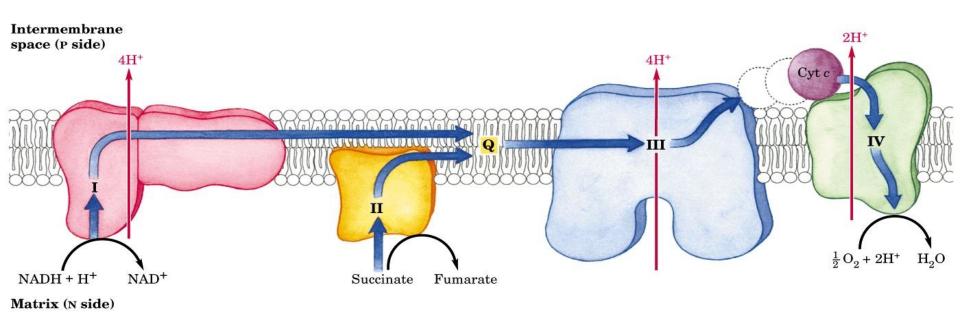
Oxidation of NADH by the electron transport chain:

NADH oxidation has the potential for driving the synthesis of a number of ATPs.

NADH +
$$\frac{1}{2}$$
 O₂ + H⁺ \rightarrow NAD⁺ + H₂O \rightarrow \rightarrow synthesis of ATPs.

NADH \rightarrow 2.5 ATP FADH2 \rightarrow 1.5 ATP

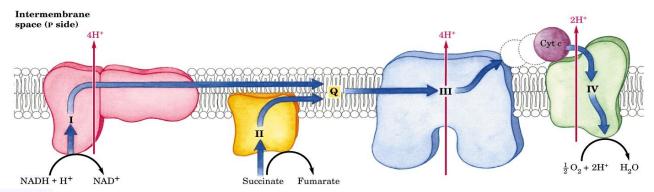
Mitochondrial electron transport


• Stage I and II of carbohydrate catabolism converge at the mitochondria.

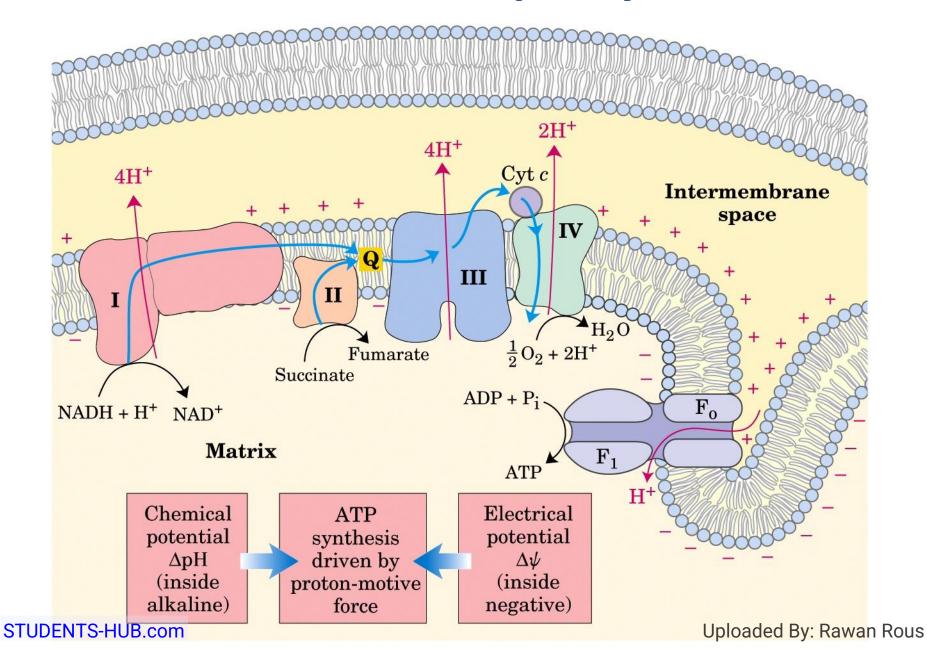
Oxidative Phosphorylation

- > The culmination of energy-yielding metabolism in aerobic organisms.
- All oxidation steps in the **degradation** of <u>carbohydrates</u>, <u>fats</u>, & <u>amino acids *converge*</u> at this final stage of cellular respiration, in which the energy of oxidation drives the *synthesis of ATP*.
- > Occurs in mitochondria
- ➤ Involves the reduction of O₂ to H₂O with electrons donated by NADH & FADH₂.
- Consists of a series of sequentially acting electron carriers, most of which are integral proteins capable of accepting & donating either one or two electrons.

Respiratory Chain: Summary of the flow of electrons & protons.



Respiratory Chain: summary of the flow of electrons & protons.


- Electrons reach Q through complexes I & II.
- QH₂ serves as a mobile carrier of electrons & protons, which passes electrons to complex III, which passes them to another mobile connecting link (cytochrome c).
- Finally, complex IV transfer electrons to O_2 .

Electron-transport chain

- Composed of four large protein complexes.
- Complex I NADH-Coenzyme Q oxidoreductase
- Complex II Succinate-Coenzyme Q oxidoreductase
- Complex III Coenzyme Q-Cytochrome c oxidoreductase
- Complex IV Cytochrome c oxidase
- Many of the components are integral membrane proteins with groups to move electrons.

Oxidative Phosphorylation

Electron-transport and oxidative phosphorylation

• Recycling is accomplished by stepwise oxidation and transfer of electrons to oxygen.

$$\begin{array}{c}
ADP + P_i \\
ATP \\
NAD^+ + H_2O
\end{array}$$

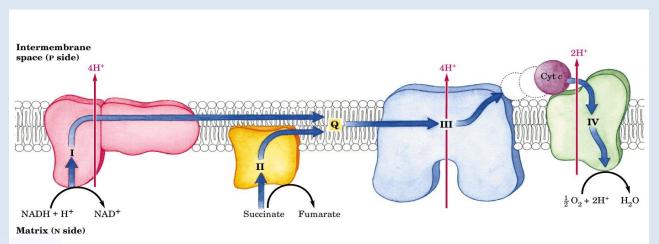
$$\begin{array}{c}
ADP + P_i \\
ATP \\
ATP \\
ATP \\
ATP \\
FAD + H_2O
\end{array}$$

$$\begin{array}{c}
ADP + P_i \\
ATP \\
ATP \\
FAD + H_2O
\end{array}$$

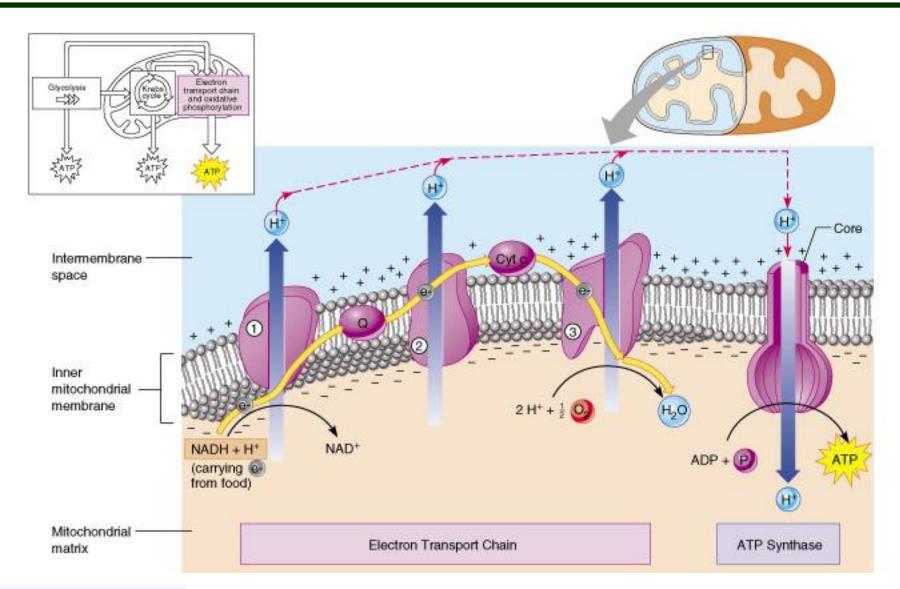
NAD⁺ and FAD are then made available for additional oxidative metabolism.

The energy released during electron transport is coupled to ATP synthesis.

The Electron Transport Chain


- A series of carrier molecules that are, in turn, oxidized and reduced as electrons are passed down the chain.
- Aerobic respiration: The final electron acceptor in the electron transport chain is molecular oxygen (O_2) .

The Electron Transport Chain


- Energy released can be used to produce ATP by <u>chemiosmosis</u> ??
- The chemiosmotic process whereby the movement of substances (e-)
 across a membrane is coupled to chemical reactions
 - Coupling <u>oxidation</u> to <u>phosphorylation</u>
 - Electron transfer is used to pump hydrogen ions into the intermembrane space (3 pumps)
 - A steep <u>diffusion gradient</u> across the membrane results
 - When hydrogen ions flow back across the membrane through ATP synthase, energy is captured and attaches phosphate groups to ADP to make ATP.

(Flow of H⁺ down gradient powers ATP formation)

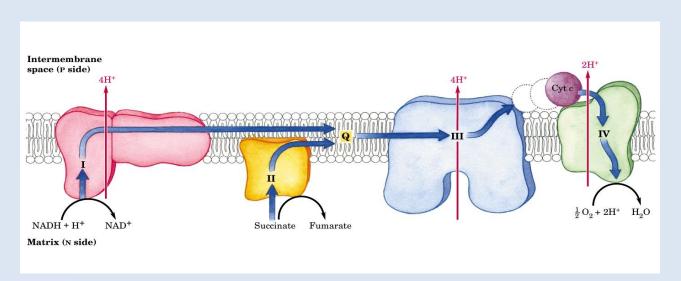
STUDENTS-HUB.com

Coupling of electron-transport with ATP synthesis

ATP

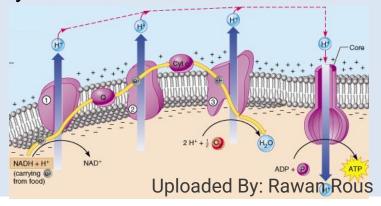
https://www.youtube.com/watch?v=39HTpUG
 1MwQ

 https://www.youtube.com/watch?v=LQmTKxI 4Wn4


For oxidative phosphorylation to proceed

- 1. High concentration of protons must be developed on the outside of the inner membrane→ creates proton gradient.
- 2. The <u>inner mitochondrial membrane</u> must be physically <u>intact</u> ---->
 protons enter matrix only through ATP synthase.

Inhibitors of Oxidative Phosphorylataion (Uncouplers)


- Inhibitors of electron transport at specific sites in the electron transport assembly,
- antimycin A is a specific inhibitor of cytochrome b.

in the presence of antimycin A → cytochrome b can be reduced but not oxidized

Inhibitors of Oxidative Phosphorylataion (Uncouplers)

- 2. stimulate electron transport by <u>discharging the proton gradient</u> (Uncouplers).
- Oxidation occurs but no phosphorylation
 - Electrons are transfered to oxygen and water is produced but there is no ATP produced
- > pH gradients are disrupted across the membrane
 - Dinitrophenolate anion (dinitrophenol, DNP). react with protons in the intermediate space thus reducing the proton concentration
 - Antibiotics as gramicidin A and valinomycin are ionophores creating a channel through which ions as H+, Na+ & K+ pass through the membrane. Oxidation and electron transfer occurs without phosphorylation

Uncoupling of electron-transport and oxidative phosphorylation

- In some special cases, the coupling of the two processes can be disrupted.
- Large amounts of O_2 are consumed but no ATP is produced.
- Used by newborn animals and hibernating mammals.
- Occurs in 'brown fat'- dark color due to high levels of mitochondria which contain <u>thermogenin</u> (uncoupling protein).

Thermogenin allows the release of energy as heat instead of ATP.

table 19-4

Some Agents That Interfere with Oxidative Phosphorylation or Photophosphorylation

Type of interference	Compound*	Target/mode of action
Inhibition of electron transfer	Cyanide Carbon monoxide	Inhibit cytochrome oxidase
	Antimycin A	Blocks electron transfer from cytochrome \emph{b} to cytochrome \emph{c}_1
	Myxothiazol Rotenone Amytal Piericidin A	Prevent electron transfer from Fe-S center to ubiquinone
	DCMU	Competes with Q _B for binding site in PSII
Inhibition of ATP synthase	Aurovertin	Inhibits F ₁
	Oligomycin	Inhibit F _o and CF _o
	DCCD	Blocks proton flow through Fo and CFo
Uncoupling of phosphorylation from electron transfer	FCCP DNP	Hydrophobic proton carriers
	Valinomycin	K ⁺ ionophore
	Thermogenin	Forms proton-conducting pores in inner membrane of brown fat mitochondria
Inhibition of ATP-ADP exchange	Atractyloside	Inhibits adenine nucleotide translocase

^{*}DCMU is 3-(3,4-dichlorophenyl)-1,1-dimethylurea; DCCD, dicyclohexylcarbodiimide; FCCP, Sandouthetheyphonylhydrazone; DNP, 2,4-dinitrophenol.