Exp show that the set
$$s = \{(x_1, x_2, x_3)^T \mid x_1 = x_1\}$$

is a subspace of $||R^3|$.
 S is nonempty since $\vec{O} = (O, O, O) \in S$.
 $TF = (a, a, b)^T$ is any vector ins, then
 $a \times = (a, a, a, a, a, ab)^T \in S$
 $TF \neq = (a, a, b)^T$ and $y = (c, c, d)^T$ are arbitrary
elements of S , then
 $x + y = (a, c, a+c, b+d)^T \in S$
Exp $|s = S = \{(x_1) : x \in ||R|\}$ is a subspace of $||R^2|$
No since $\binom{a}{1} \in S$ but $x\binom{2}{1} = \binom{a \times a}{x} \notin S$ when $x \neq 1$
For since $\binom{a}{1} \in S$ but $x\binom{2}{1} = \binom{a \times a}{x} \notin S$ when $x \neq 1$
 FF show that $S = \{A \in ||R^{2n}: a_1z = -a_n\}$ is a subspace of $||R^{2n}|$
 S is nonempty since $\begin{bmatrix} O & O \\ O & O \end{bmatrix} \in S$ or $\begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \in S$
 $TF = A = \begin{bmatrix} a & b \\ -b & C \end{bmatrix}$ is any matrix in S , then
 $aA = \begin{bmatrix} xa & xb \\ -b & C \end{bmatrix}$ is any matrix in S , then
 $aA = \begin{bmatrix} xa & bb \\ -b & C \end{bmatrix}$ and $A_2 = \begin{bmatrix} a_1 & b_1 \\ -b_2 & c_2 \end{bmatrix}$ are arbitrary elements
of S , then $A_1 + A_2 = \begin{bmatrix} a_1 & b_1 \\ -b_2 & c_2 \end{bmatrix} \in S$.
STUDENTS-HUB.com
Fight $O[A_n: is the set of all polynomicles of degree less than n .
 $\Rightarrow P_2 = \{P(x): P(x) = a_1x^2 + b_2\}$
 $\Rightarrow C^*[a_1b]: is the set of all functions f that have
continuous f^* derivative on $[a_1b]$.
 $\Rightarrow C^*[a_1b] = \{F(x): f \text{ is continuous on $[a_1b]$.
 $\Rightarrow C^*[a_1b] = \{F(x): f \text{ is continuous on $[a_1b]$.$$$$

End Let 5 be the set of all 2x2 triangular matrices.
Is 5 a subspace of IR^{XZ}.
No since
$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in 5$$
 and $B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in 5$ but
 $A + B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \notin 5$.
Def Let A be man matrix. The Null Space of A is the
set of all solutions of the homogeneous system $Ax = 0$.
That is, $N(A) = \{x \in IR^n \} | Ax = 0\}$
Exp show that $N(A)$ is a subspace of IR^n .
 $N(A)$ is non empty since $\vec{o} \in IR^n$
 $\cdot If \vec{x}$ is any vector in $N(A)$, then
 $A(\vec{x}\cdot\vec{x}) = A\vec{x} = A(\vec{o}) = \vec{o}$. Hence $\vec{x}\cdot\vec{x} \in N(A)$.
 $\cdot If \vec{x}$ and \vec{y} are arbitrary elements of $N(A)$, then
 $A(\vec{x}\cdot\vec{y}) = A\vec{x} + A\vec{y} = \vec{o} + \vec{o} = \vec{o}$. Hence, $\vec{x} + \vec{y} \in N(R)$
Exp Show that $N(A) = \{\vec{x} \in IR^n : A\vec{x} = \vec{o}\}$. $Ax = 0 \implies$
 $If \vec{x}$ and \vec{y} are arbitrary elements of $N(A)$, then
 $A(\vec{x}\cdot\vec{y}) = A\vec{x} + A\vec{y} = \vec{o} + \vec{o} = \vec{o}$. Hence, $\vec{x} + \vec{y} \in N(R)$
Exp Find $M(A)$ if $A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 2 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{i} \\ x_{i} \\ x_{i} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. We use Gauss-Jordan Reduction
For solve this system.
Students: BUB: constrained matrix is
 $\begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & -1 & -2 & 1 & 0 \end{bmatrix} R_{12} = R_{13} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & -1 & 0 \end{bmatrix}$
Let $x_{3} = x$ and $x_{9} = B$. Hence, $x_{1} = x - B$ and $x_{2} = B - 2x$
 $x = \begin{pmatrix} x_{1} - B \\ R = x \end{pmatrix} + B\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ is a solution of $Ax = 0$.

The vector space
$$N(A) = \begin{cases} \chi \in IR : \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} \chi_B \in R \\ R \end{pmatrix}$$

Def • Let V_1, V_2, \dots, V_n be vectors in a vector space V .
• The sume $\kappa_1, V_1 + \kappa_2, V_2 + \dots + \alpha_n V_n$ is called a linear combination
of V_1, V_2, \dots, V_n , where $\kappa_1, \kappa_2, \dots, \kappa_n$ are scalars.
• The set of all linear combinations of V_1, V_2, \dots, V_n is called
He span of V_1, V_2, \dots, V_n denoted by $span(V_1, V_2, \dots, V_n)$.
Note: $\ln Eq^{\mu}$: $N(A) = span((v_1, v_2))^T, (-v_1, 1, 0, 1)^T)$
Exp: $\ln IR^2$: Π span $(e_1, e_2) = \{ V \in IR^3 : V = \alpha_1 e_1 + \kappa_2 e_2 = \begin{pmatrix} \kappa_1 \\ \kappa_1 \end{pmatrix} \}$
 I and I are subspaces of IR^2 = IR^3
If V_1, V_2, \dots, V_n are elements of a vector space V , then
 $span(V_1, V_2, \dots, V_n)$ is a subspace of V .
Proof • span (V_1, V_2, \dots, V_n) is nonempty since $O \in span(V_1, V_2, \dots, V_n)$
• $If V$ is any element of span (V_1, V_2, \dots, V_n) , then
 $V = \kappa_1, V_1 + \kappa_2 V_2 + \dots + \kappa_n V_n$ and Uploaded By: anonymous
 $W = R, V_1 + R_2 V_2 + \dots + R_n V_n$.
 $W = R, V_1 + R_2 V_2 + \dots + R_n V_n$.
 $W = R, V_1 + R_2 V_2 + \dots + R_n V_n$.

Def The set
$$\{\vec{v}_{1}, \vec{v}_{2}, \dots, \vec{v}_{n}\}$$
 is a spanning set for a
vector space V iff every vector in V can be written as
a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \dots, \vec{v}_{n}$.
Eng which of the following are spanning set for $[R^{3}?$
 $\square \{e_{1}, e_{2}, e_{3}, (\frac{1}{2})\}$
• To see if a set spans $[R^{3}, we take any vector $\binom{n}{b} \in R^{3}$
and we check if $\binom{n}{b}$ can be written as a linear combination
of $e_{1}, e_{2}, e_{3}, (\frac{1}{2})$.
 $Rs since $\binom{n}{b} = a e_{1} + b e_{2} + c e_{3} + o\binom{1}{2}$
 $i e_{1} \binom{n}{b} \in [R^{3}]$ be arbitrary vector.
• we need to see if we can find $\varkappa_{1}, \varkappa_{2}, \varkappa_{3}$ s.t
 $\binom{n}{b} = \varkappa_{1} \binom{1}{1} + \varkappa_{2} \binom{1}{0} + \varkappa_{3} \binom{1}{0}$
• This leads to the system $d_{1} + \varkappa_{2} + \varkappa_{3} = a$
 $\kappa_{1} + \kappa_{2} = b$
 $\kappa_{1} = c$
The coefficient matrix is nonsingular since the system $A \varkappa = B$ is
STUDENTS-HUB.com $\binom{1}{0} \stackrel{1}{0} \stackrel{1}{0} \binom{\kappa_{1}}{\kappa_{3}} = \binom{n}{b}$ with $|A| = -1$
Uploaded By: anonymous
 \Rightarrow The system has unique solution $d = \binom{\kappa_{1}}{\kappa_{2}} = \binom{k}{a-b}$
 \cdot Thus, $\binom{n}{b} = c \binom{1}{1} + (b-c)\binom{1}{0} + k - b\binom{1}{b}$$$

$$\begin{split} & \fbox{I} \left\{ \begin{pmatrix} i \\ 0 \end{pmatrix}, \begin{pmatrix} i \\ 0 \end{pmatrix} \right\} \\ & \swarrow \\ & \blacksquare \\ &$$