Ibrahim Küçükdeniral YTU Kontrol & Otomasyon Muh. Bol. Control Systems KDM3711 www. kucukdeniral.com 1) Teaching La Control Systems 2 x 30%. 2 midtern excoss 1 x40% 1 Final exam

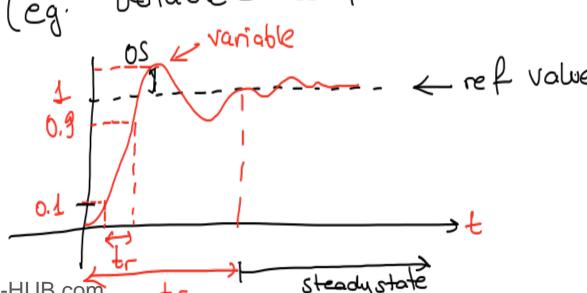
1. Introduction
2. Math. preliminaries
3. Modeling
4. First order syst.
5. 2nd order syst.
6. Steady-State errors
7. Stability

8. Desipn

Introduction to Control

Loosely speaking, control is the process of getting "something" to do what you wont it to do.

La con be almost onything: Ex: aircrafts, spacecrafts, cors, machines, robots, radors, telescopes, etc.


Some less obvious exemples: energy systems, the economy, biological systems, human body.

Manual Control: human-machine interaction. Driving our, bike, etc.

Automatic Control: No human exists.

Definition: Control is the process of causing a system voiable to conform to some desired value which is called "reference" value.

(eq. voiable = temp in a climate control system)

Uploaded By: Mohammad Awawdeh

Definition: Feedback is the process of measuring the controlled Variable (e.g. temp) and using that information to influence the value of the controlled variable.

An illustrative example of a fb system

Consider the system designed to maintain the temperature

of our house.

Pout

Room temp

Thermostate

Gas value

Funace

Thomastate

Funace

· Central component = process or plant or system one of whose variable we want to control

e.g. Plant = house Variable = Room Temp

· Disturbence: some system input that we do not control.
e.g. disturbence = Dout temp. loss.

· Actuator: device that influences controlled voicible c.g: actuator = furnace + gas value.

Reference Sensor: measures the desired system output
output sensor: " actual "
DENT'S-HUB.com / Compensator: device that computes the control effort
Uploaded By: Mohammad Awawdeh

An ever more abstract block diagram disturbace ReP. output actuate plant Compensator value actual output We assumed that we have a perfect sensor. sersor dynamics کس (رهور) مرانه

The Control Problem Methodology

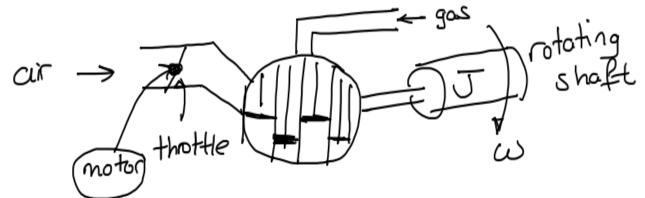
- The objectives of any control system design! L. "Reject" disturbances (plant response to unworted
 - 2. Acceptable steady-state errors
 3. Acceptable Fronsient-response

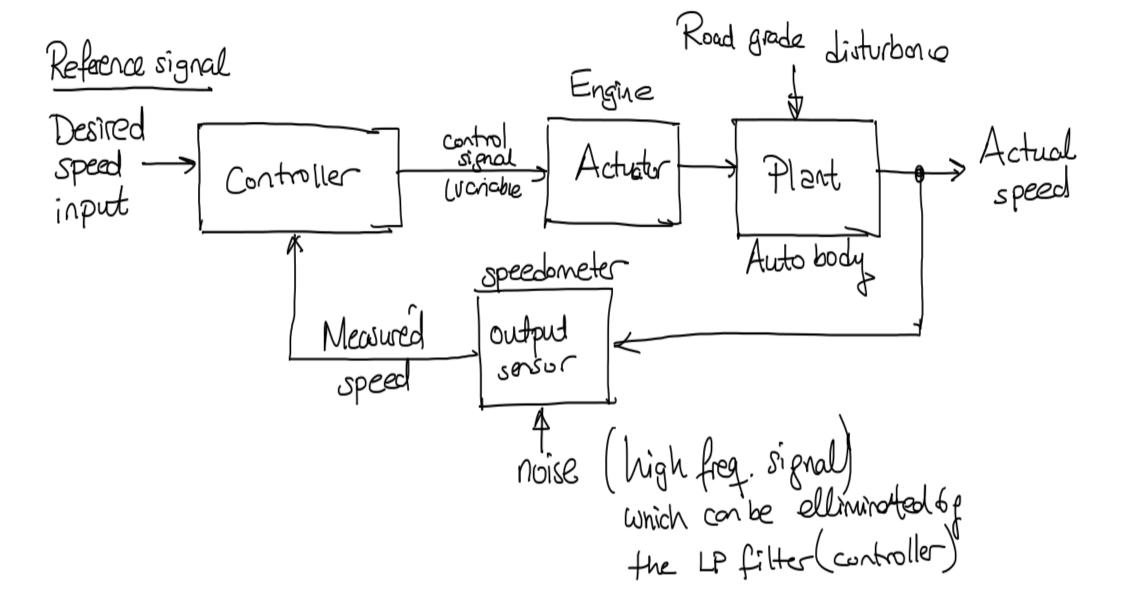
 - 4. Minimize the sensitivity to plant parameter changes (robust control)

Solutions are reached via the methodology:

) I. Choose an acceptable output sensor.

> 2. Choose on appropriate actuator


Bevelop plant, actuator, sensor equations (models) L. J. Design the controller based on the model L5. Evaluate the design, onalytically, simulations, pototype

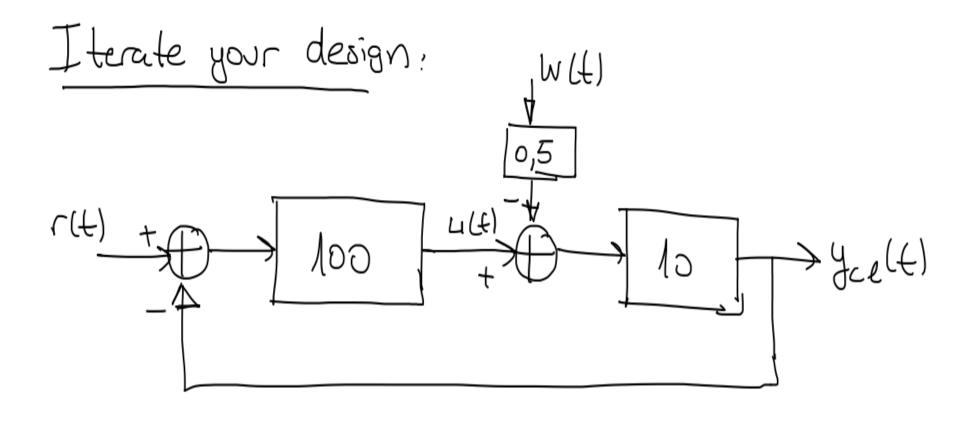

A First Time Analysis

- · Suppose, we wish to design a cruise-control system for on automobile.
- · Generally, we wish to control the cost speed.

Following our design methodology:

- 1. output sevor = speedometer
- 2. actuator = throttle and engine

3. Model of the system: · operating speed 255 km/h · 17. change in throttle >> lokm/h change in speed · 1 / change in road grade => 5km/h · speedometer accurate to a fraction of 1km/h ylt):actual u(t1:throttle position(/.)


Uploaded By: Mohammad Awawdeh

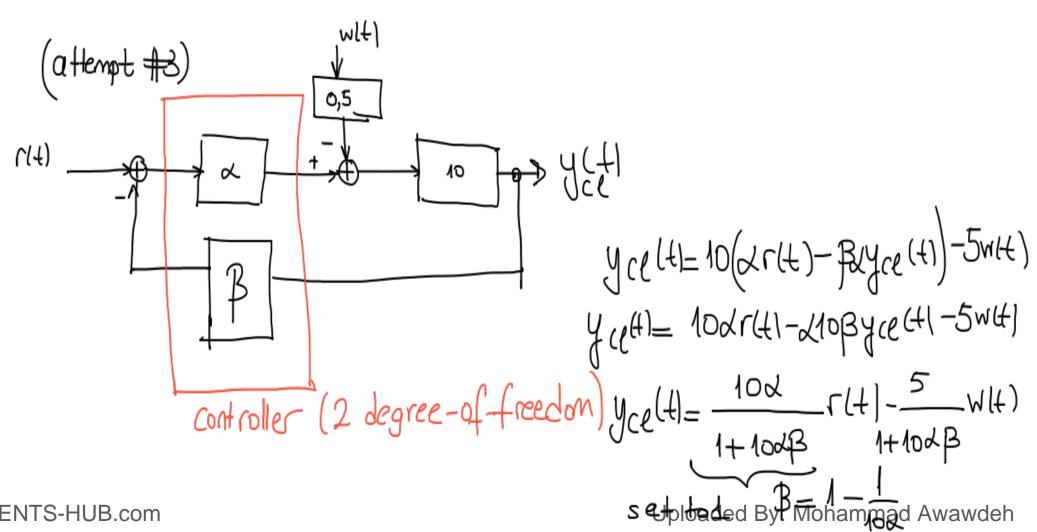
4. Design the controller:

$$\frac{\text{controller}}{\text{r(t)}} \rightarrow \frac{1}{10} + \frac{1}{10} \rightarrow \text{y(t)}$$

$$\frac{y_{oe}(t) = 10(u(t) - 0.5w(t))}{(u(t) = 1/6r(t))} = 10(1/6r(t) - 0.5w(t))$$

$$\Rightarrow y_{ol}(t) = r(t) - 5w(t)$$

$$y_{ce}(t) = 10u(t) - 5w(t)$$
 $u(t) = 100(r(t) - y_{ce}(t))$
 $y_{ce}(t) = 10 (100(r(t) - y_{ce}(t)) - 5w(t)$


$y_{ce}(t) = 0.999r(t) - 0.005w(t)$

5. Evaluate the design:

STUDENTS-HUB.com

Uploaded By: Mohammad Awawdeh

Feedback syst. réjects disturbonces Feedback syst. has steady-stak emors.

when r(t)=55km/h, $w(t)=0 \implies e_{ss}=0$ steady-state error

System Modeling in Time-domain

· We use the term <u>model</u> to refer to a set of mathematical equations used to represent a physical system. These equations relate system's output signal to its input.

input _____ model ____ output signal A model is required in order to 1. Understand the system behaviour 2. Design the controller There are 2 approaches to model: 1. Analytical modeling - we'll focus on this method. 2. Emprical system identification Consider 12, 2W resistar

- v(L)= [(H) R
- . Ohn's law V(t)=1(t) K.
 . Apply 1V. What happen?

$$\rightarrow$$
 1A of current is predicted to flow
Power dissipated = $\frac{V^2}{R}$ = 1W

Apply 10V

-> 10 A of current is predicted Pissipated power = V2/R=100 W

=> model will no longer be accurate

=> True model depends on input signal.

=) Model is accurate only ma certain range of input signals.

LTI System (Linear Time Invoint) System)

Time-Invaiance: A system is either time vaying or
time-invaiant, not-both
A time-invariant system does not change its fundamental
behaviour over different periods of time.

It's parameter values are constant

A TI system satisfies the following property: $\chi(1-3) \longrightarrow y(1-3)$ when $\chi(1) \longrightarrow y(1)$ (Yt, Y3) Test method:

- · Input x1(L) is applied to the system and the output Y1(L) is measured
- *Input $X_2(t) = X_1(t-7)$ is applied to the system, the measured output $y_2(t)$ is recorded
- . If $y_2(t) = y_1(t-5)$ for all possible delays (750) and signals $x_1(t)$, then we conclude that the system is TI.

Consider the system
$$y(t) = (x(t))^2$$

$$T1/TV?$$

$$Y_1(t) = (X_1(t))^2$$

$$apply X_2(t) := X_1(t-3) \text{ so } y_2(t) = (X_1(t-3))^2$$

$$y_1(t-3) = (X_1(t-3))^2 \qquad \text{identical}$$

$$\therefore \text{ square-law system is } T_1$$

EX: (delay operator)
$$T1/TV$$
?

$$x(t) \longrightarrow \chi \xrightarrow{\chi(t)} \chi(t) = \chi(t-\lambda), \ \lambda>0$$

$$\chi(t) \longrightarrow \chi_1(t-\delta) = \chi_1(t-\delta) = \chi_1(t-\delta) = \chi_2(t-\lambda) = \chi_1(t-\lambda-\delta)$$

$$\chi_2(t) := \chi_1(t-\delta) \longrightarrow \chi_2(t-\lambda) = \chi_1(t-\lambda-\delta)$$

$$= \chi_1(t-\delta) = \chi_1(t-\delta) = \chi_1(t-\lambda-\delta)$$

$$= \chi_1(t-\delta) = \chi_1(t-\delta) = \chi_1(t-\lambda-\delta)$$

$$\begin{array}{c} x(t) \longrightarrow y(t) = x(kt) \\ \hline -1 & 0 & 1 & 1 \\ \hline \end{array}$$

$$k=2 \qquad \begin{array}{c} -0.5 & 0.5 \end{array}$$

Test:
$$\chi_1(t) \longmapsto y_1(t) = \chi_1(kt) \longrightarrow y_1(t-\delta) = \chi_1(k(t-\delta)) = \chi_1(kt-k\delta)$$

 $= \chi_1(kt-k\delta)$
 $\chi_2(t) \longmapsto y_2(t) = \chi_2(kt)$

$$\chi_{2(L)} := \chi_{1}(L-\zeta) \longrightarrow y_{2}(L) = \chi_{2}(kL) = \chi_{1}(kL-\zeta)$$

Uploaded By: Mohammad Awawdel

STUDENTS-HUB.com

Linearity: For Linear Systems, if $\chi_1(H) \rightarrow y_1(H)$ and $\chi_2(H) \rightarrow y_2(H)$

then 7/3(t) = X X/(t) + B X2(t) +> y3(t) = dy/(t) +By2(t) +By2(t)

for ony d, B, 21(4), 22(4)

To test linearity, we must:

- . in put X1(+) to the system, measure y1(+)
- o input 2011 " " " y214
- . input X3(H)=dX1(H)+BX2(H) to the syst, measure y3(H)
- off y3(+= of y1(+1+By2(+) $\forall x, \forall x_1, \forall x_2, \forall \beta \Rightarrow syst.(L)$ Uploaded By: Mohammad Awawdeh

STUDENTS-HUB.com

$$\chi(t)$$
 \longrightarrow $j(t)+ty(t)=\chi(t)$ \longrightarrow $J(t)$

$$x_1(t) \longrightarrow y_1(t) : \ddot{y}_1(t) + \dot{t}y_1(t) = x_1(t)$$

$$X_{2}(H) \longrightarrow y_{2}(H) : \hat{y}_{2}(H) + fy_{2}(H) = x_{2}(H)$$

$$X_3(t) = \emptyset X_1(t) + \beta X_2(t) \longrightarrow y_3(t) = ?$$

 $y_3(t) = \dot{y}_3(t) + \dot{t} y_3(t) = \emptyset X_1(t) + \beta X_2(t)$

STUDENTS-HUB.com

Uploaded By: Mohammad Awawdeh

Ex: (Square-Law Syst)
$$y(t) = (x(t))^2$$

Test: $\chi_1(t) \mapsto y(t) = (\chi_1(t))^2$
 $\chi_2(t) \mapsto y_2(t) = (\chi_2(t))^2$
 $\chi_3(t) = d\chi_1 + \beta\chi_2 \mapsto y_3 = (d\chi_1 + \beta\chi_2)^2 = d^2\chi_1^2 + \beta^2\chi_2^2 + 2d\beta\chi_1\chi_2$
 $= \frac{2}{3} dy_1 + \beta y_2 = d\chi_1^2 + \beta\chi_2^2$
 $= 3$

Square-law system is not linear

STUDENTS-HUB.com

Modeling of Physical Systems

Dynamics of mechanical systems (traslational motion)

Tronslational motion: Newton's 2nd Law

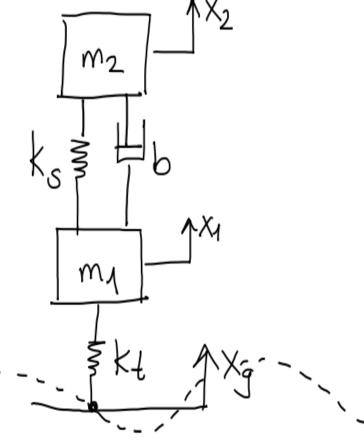
 $\sum F = m \cdot a$ $[Kg] [m/s^2]$

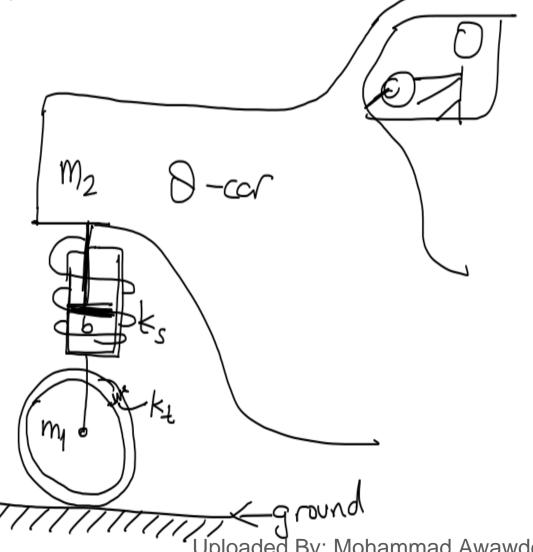
That is, the vector sum of forces = mass of the obj X acceleration

(cruise control model)

1. Assume rotational mertia is negligible 2. Assume that the friction is proportional to car's speed.

b: viscous friction constant

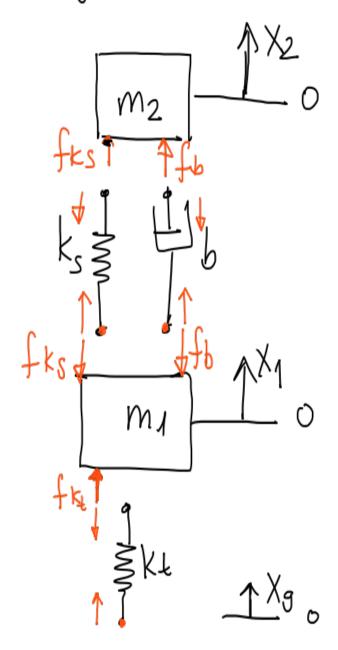

$$u(t) - b\dot{x}(t) = m\ddot{x}(t)$$


$$\Rightarrow \frac{1}{X(t)} + \frac{b}{m} \dot{x}(t) = \frac{1}{m} u(t)$$
 2nd order ODE

If the variable of interest is the speed (VH) = x(t)

$$\Rightarrow$$
 $\dot{v}(t) + \frac{b}{m}v(t) = \frac{1}{m}u(t)$

EX: (cor suspension)



STUDENTS-HUB.com

Úploaded By: Mohammad Awawdeh

free-body diagram:

$$2 f_{ks} + f_b = m_2 \ddot{x}_2$$

(2)
$$k_5(x_1-x_2)+b(\dot{x}_1-\dot{\chi}_2)=m_2\dot{x}_2$$

Translational motion

$$f(t) = k \times (t) , \times (0) = \bar{x} = 0$$

$$F(s) = k \times (s)$$

$$F(S)$$
 $X(S)$

$$K = spring const.$$
 (N/m)

Domper

$$x(t)$$
 $x(t)$
 $x(t)=x(t)=0$
 $f(t)=bx(t)$
 $f(t)=bx(t)$
 $f(t)=bx(t)$
 $f(t)=bx(t)$
 $f(t)=bx(t)$
 $f(t)=bx(t)$
 $f(t)=bx(t)$

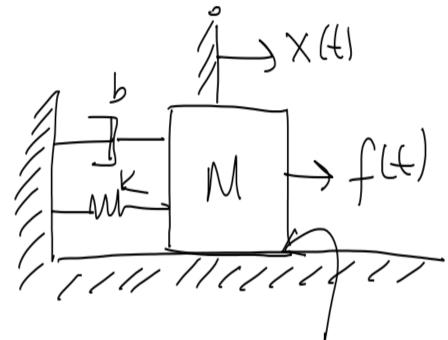
free-body diagram

$$\rightarrow \int -f_b - f_k = M \times \times (o) = \dot{x}(o) = 0$$

$$\rightarrow \int -b\dot{x} - kx = M\dot{x}$$

$$f - b \dot{x} - k x = M \dot{x} \implies F(s) - b s \chi(s) - k \chi(s) = M s \chi(s)$$
Uploaded By: Mohammad Awawdeh

$$F(s)$$
 $\frac{1}{Ms^2+bs+k}$ $\frac{1}{2^{nd}}$ order ODE


$$S^{2}MXU = FULKX(SI - bsXU)$$

$$X(S) \begin{bmatrix} s^{2}M + bS + k \end{bmatrix} = FU$$

$$X(S) = \frac{1}{MS^{2} + bS + k}$$

$$F(S)$$

Ex:

by: viscous friction const. (proportional to speed)

free-body diagram!
$$f - fb - fk - fv = M\vec{x}$$

$$f - fb - fk - fv = M\vec{x}$$

$$f - b\vec{x} - kx - bv \cdot \vec{x} = M\vec{x}$$

$$f - i(b + bv) - kx = M\vec{x}$$
STUDENTS-HUB.com
$$F(s) - (b + bv) \cdot Sx(s) - kx(s) = Ms^2x(s)$$

State-Space Models of Tronslational mechanical Systems

John Styl

The dynamic of motion

$$m\ddot{s}=f-ks-b\ddot{s}$$

$$\Rightarrow$$
 m $x_3 = u - k x_1 - b x_2$

$$\begin{cases}
=: X_1 \\
\dot{\zeta} =: X_2 = \dot{X}_1
\end{cases}$$

$$\dot{\zeta} =: \dot{\zeta}_1 \\
\dot{\zeta} =: \dot{\zeta}_1 \\$$

$$\dot{X}_1 = X_2$$

 $\dot{X}_2 = -\frac{k}{m} X_1 - \frac{b}{m} X_2 + \frac{1}{m} u$

$$\dot{X}_{1} = \dot{X}_{2}$$

$$\dot{X}_{2} = -\frac{\dot{K}}{m}\dot{X}_{1} - \frac{\dot{b}}{m}\dot{X}_{2} + \frac{\dot{b}}{m}\dot{U}$$

$$\dot{X}_{2} = -\frac{\dot{K}}{m}\dot{X}_{1} - \frac{\dot{b}}{m}\dot{X}_{2} + \frac{\dot{b}}{m}\dot{U}$$

$$\dot{X}_{1} = -\frac{\dot{b}}{m}\dot{X}_{2} + \frac{\dot{b}}{m}\dot{U}$$

$$\dot{X}_{2} = -\frac{\dot{k}}{m}\dot{X}_{1} + \frac{\dot{b}}{m}\dot{U}$$

$$\dot{X}_{3} = -\frac{\dot{k}}{m}\dot{X}_{1} + \frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{1} = -\frac{\dot{k}}{m}\dot{X}_{2} + \frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{2} = -\frac{\dot{k}}{m}\dot{X}_{1} + \frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{3} = -\frac{\dot{k}}{m}\dot{X}_{2} + \frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{2} = -\frac{\dot{k}}{m}\dot{X}_{1} + \frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{2} = -\frac{\dot{k}}{m}\dot{X}_{1} + \frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{2} = -\frac{\dot{k}}{m}\dot{X}_{1} + \frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{3} = -\frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{2} = -\frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{1} = -\frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{2} = -\frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{1} = -\frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{2} = -\frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{2} = -\frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{3} = -\frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{2} = -\frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{3} = -\frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{3} = -\frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{4} = -\frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{3} = -\frac{\dot{k}}{m}\dot{U}$$

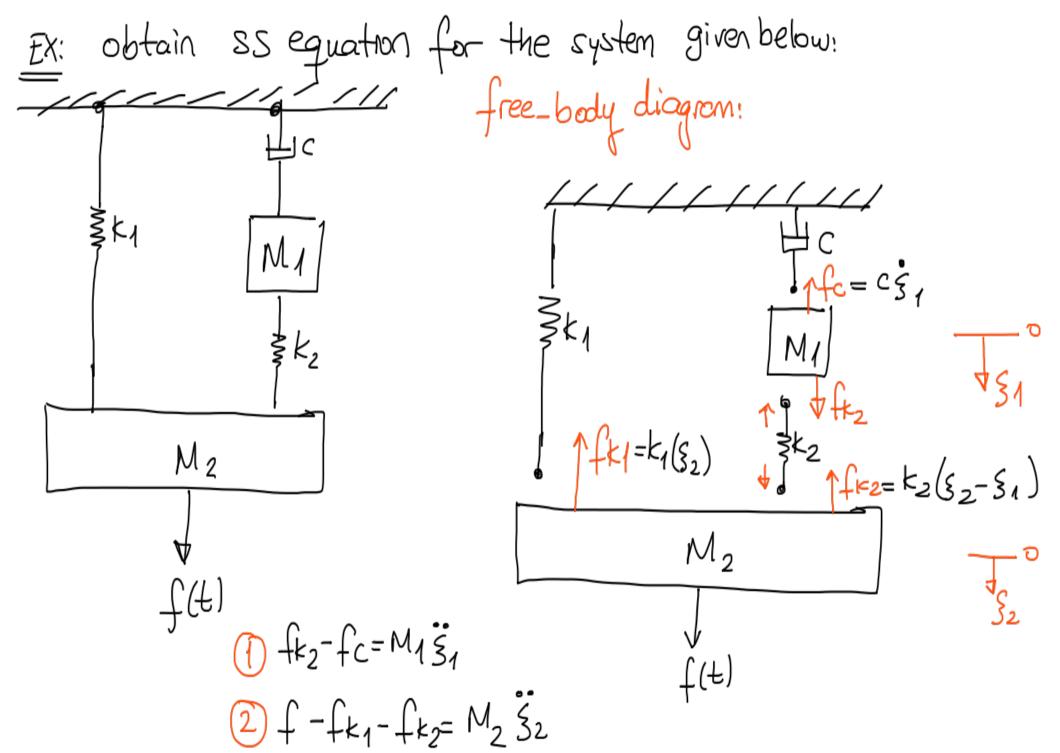
$$\dot{X}_{4} = -\frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{4} = -\frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{5} = -\frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{7} = -\frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{7} = -\frac{\dot{k}}{m}\dot{U}$$


$$\dot{X}_{7} = -\frac{\dot{k}}{m}\dot{U}$$

$$\dot{X}_{7} = -\frac{\dot{k}}{$$

STUDENTS-HUB.com

Let's assume we're interested in the output velocity

STUDENTS-HUB.com

Uploaded By: Mohammad Awawaeh