STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Presentation Outline

* What is Virtual Memory?

s+ Fast Address Translation

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

What is Virtual Memory?

“+ Extends main memory into disk storage
< In early computers, main memory was small and expensive
< Virtual memory enables a program to exceed the memory size
¢ Defines a virtual address space for a running program
< A running program is called a process

<> Multiple processes can exist in memory at the same time
“ Simplifies Memory Management done by the OS

<> Operating system software allocates memory to each process
¢ Provides protection to processes and operating system

<> Main memory is shared by processes and operating system

< Virtual memory enforces protection through address translation
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

What is Paging?

¢ A process virtual address space is divided into pages

< All pages have the same fixed size (simplifies their allocation)

“ Operating system allocates and maps pages
< Either in main memory or on disk (if no sufficient memory space)
< Page table does the mapping from virtual to physical addresses

Process 1 Process 2 Main Memory Disk Storage
Virtual addresses Virtual addresses Physical addresses Disk addresses
0 Al 0 A2 0 <l >
4K B1 4K B2 4K D2
8K C1 8K C2 8K B1 E1
12K D1 12K D2 12K Al C2
16K E1 16K B2 D1
20K A2
Example: Page Size = 4K Bytes 24K ¢l
28K — -

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

What is a Page Table?

“+ Pages appear contiguous in the virtual address space

< However, they can be scattered in main memory (and disk)

Page Table Address Register Virtual Page Number | Page offset
é. index to page table
Physical Page Address Attributes ;9_)
@)
Page Table does o
the mapping. L &
Managed by the GEJ
(4°)
operating system. "’
v v

Physical Address | Physical Page Address | Page offset

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Page Table

“ Each process has a page table
<> The page table defines the physical address space of a process
<> Physical address space = physical pages that can be accessed
< Page table is stored in main memory

< Managed only by the operating system
“* Page table address register
<> Contains the physical address of the page table in memory
<> Processor uses this register to locate page table in memory
*» Page table entry

<> Contains physical page number and attributes of a single page

< Attributes specify page presence, protection and use
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Page Table Entry Format

“ Each Page Table Entry (PTE) stores:

< Physical address of a page in memory

<> Page attributes (vary according to architecture)

< PTE is 4 bytes for 32-bit, and 8 bytes for 64-bit architectures
*» Typical page attributes

<> Presence bit: indicates whether page is present in memory
Read/Write: whether page is read-only or can be written
User/Supervisor: whether page is for operating system use only
Accessed: whether page has been accessed recently
Dirty: whether page has been modified

Cache disable: whether page can be cached or not

R R R S

Page size: whether page is small or large
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Analogy to Caches

Cache Concept Virtual Memory Concept
Cache Block =32, 64, or 128 bytes Small Page = 4 KB, Large Page =4 MB
Cache Miss: Block not found in Cache Page Fault: Page not present in memory
Transfer block from memory to cache Transfer page from disk to memory
Miss Rate: 0.1% to 10% Page Fault Rate: 0% to 0.001%
Miss Penalty: 8 to 200 clock cycles Page Fault Penalty: 10° to 107 cycles
Cache Miss is handled in hardware Page Fault is handled in software
Placement: Direct mapped, set Associative Page placed anywhere in memory
Tags identify cache blocks (hit or miss) Page table indicates page presence
Block replacement done is hardware Page replacement done in software
Write policy: Write-through or Write-back Write-back only (Modified bit)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Advantages of Virtual Memory

“ Memory Management
< Programs are given contiguous view of virtual memory
< Physical pages are simple to allocate and can be scattered
<> Only the working set of a program must be in main memory

<> Heap and stack can grow (use as many pages as needed)

¢ Protection
<> Different processes are protected from each other
<> Pages are given special attributes (read only, write, execute)
< Operating system data protected from user programs
“ Sharing
< Can map same physical page to multiple processes

<> Processes can share library code and can also share data
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Issues in Virtual Memory

*» Page Size
< Small page sizes ranging from 4KB to 16KB are typical today
<> Large page size can be 2MB or 4MB (reduces page table size)
< Recent processors support multiple page sizes

*» Fully associative placement to reduce page faults

“ Handling Page Faults and Replacement Policy
< Page faults are handled in software by the operating system
< Reference bit per page: which page is referenced recently
<> Modified bit per page: which page is modified

** Reducing the page table size

¢ Supporting fast address translation
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Page Fault / Invalid Memory Access

“ Page Fault: requested page is not present in memory
< The missing page is located on disk and transferred to memory
< It takes milliseconds to transfer a page from disk to memory
< Another process may run while first process is waiting
< A free page Is allocated in memory and page table is updated

<> Program is restarted at the instruction that caused page fault

* Invalid memory access: several cases such as

L)

< Reference to a page not part of the virtual address space
<> Writing to a read-only page
<> Accessing a supervisor (operating system) page in user mode

<> Operating system terminates program (segmentation fault)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Page Replacement Algorithm

“» Working Set of a Process
< Set of pages expected to be used during some time interval

<> Page faults occur when the working set is not in memory

* Page replacement algorithm
<> Decide which memory pages to swap out (write to disk)

< To free pages in memory, when number of free pages is low
“* Many replacement algorithnms: FIFO, NRU, Clock

¢ Clock replacement algorithm
<> Keep a circular list of pages in memory (circular FIFO)
< Point to next page to replace and examine the access bit
< Skip pages that have been accessed (replace if Access bit = 0)

<> Operating system clears the access bits periodically
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Size of the Page Table

“ One-level page table is the simplest to implement

¢ Consider: 32-bit virtual address space with 4KB pages

*» Page offset = 12 bits and Virtual Page Number = 20 bits

Virtual Page Number 20

Page Offset 12

“* What is the size of the page table if entry = 4 bytes?

% Answer: 232/212 = 220 entries % 4 bytes = 4 MB

** Now consider: 48-bit virtual address with 4KB pages

** What is the size of the page table if entry = 8 bytes?
% Answer: 248/212 = 236 entries x 8 bytes = 512 GB !

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Reducing the Page Table Size

“* Many processes have a small virtual address space
< Might need only few pages for code, data, and stack
* Use Limit Register to restrict the size of the page table
<> Does not work well when the virtual address space is sparse
* Use Hierarchical Page Table for sparse address space
< Small page tables (size of a page) allocated at different levels
< Can efficiently map multiple dynamic stacks and heaps
< Disadvantage: multiple table traversal for address translation
*» Use Multiple Page Sizes rather than one page size

< Large page size works better for large virtual address space

*» Use Hashed Page Table shared by all processes
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Two-Level Page Tables (Intel 32-bit)

32-bit Virtual Address

L2 index0 | L1 index0 Offset!?

L1 Table

4 KB

%

L2 Table Address

L2 Table

L1 Table

Y,

Page

(stack)
> |

>

Physical —
Page 4 KB

Address Pa ge

(data)

>
I

&

Page in Memory

Page swapped out to disk

m Non-existent Page
Page Table Size = Page Size = 4 KB

STUDENTS-HUB.com

L1 Table

7

L1 Table

4 KB
Page
(code)

Address

>

>
1 S |

Uploaded By: Jibreel Bornat

Variable-Size Page Support

32-bit Virtual Address L1 Table |
L2 index10 Offset?? 4 KB
7 Page
> |
>
L2 Table Address
Physical
L2 Table Address
4 MB Page
’é > L1 Table
. % —
P M
dage in emory . / 4 KB
Page swapped out to disk
m Non-existent Page L1 Table Page
Page Table Size = 4 KB Address L0 I

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Sharing Pages Among Processes

4 KB
Page

Process A

Process A
L2 Table

STUDENTS-HUB.com

Process A Process B
L1 Tabl L1 Tabl
_°a : 4 KB '_a - 4KB
% % Page
// Shared // &
Process B
Data
N > €
Process B
4 MB Shared Page L2 Table
(Shared library code) } I
>
Process A Process B 7
L1 Table . L1 Table
4 KB
4 KB
i Page p ===
I Process A age
7) Process B 7

Uploaded By: Jibreel Bornat

Four-Level Page Tables (AMD64)

63 48 47 39 38 30 29 21 20 12 11 0
??? :(1)or Page-map L4 | Page-dir-ptr |Page-directory| Page-table Page offset
|
Page-map L4 9 -9 -9 -9 + 12
base addr (CR3)

Page-map L4 table

Page-directory

pointer table .
Page-mp entry th;)gl;e-dlrectory
able

Page table
Page-dir entry Adé
X Page-table entry

Page-dir-ptr entry

Virtual address = 48 bits
Physical address = 40 bits

Physical address !

Table Size = 4 KB (512 x 8-Byte entries) Physical page frame number | Page offset

Page Size = 4 KB, 2 MB, or 4 MB e

Main memory

Copyright © 2012, Elsevier Inc. All rights Reserved.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

System-Wide Hashed Page Table

*» Shared by all processes and operating system
“» Example: Intel [tanium architecture

*» Uses the concept of virtual regions (8 per process)

8 Region < 64-bit Virtual Address >
Registers VRN | Virtual Page Number (VPN) | Page Offset

RRO 3

RR1 | Region ID | PS [&— Hashed
s : Virtual Region Number Page Table

Hashlng
Function

PS = Page Size = 4KB to 256 MB Table S'ZeT
Multiple Pages Sizes are supported PTA

RR7

Base

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Hashed Page Table Entry

* Hashed Page Table Entry includes the following fields:
< Tag that matches Region ID and Virtual Page Number
<> Presence bit, Physical Page Address
<> Access hit, Dirty bit, Privilege level, Access rights
< Link in case of collision (multiple entries are searched)

<> Hashed page table entry can be long (32 bytes on the Itanium)

“» Example of a simple hashing function:
< Hashed Page Table Index = (VPN @ Region ID) % Table Size
< Generates an index between 0 and Table Size — 1
< Page Size (PS) specifies the number of bits in VPN

< Hashed Page Table is searched by content
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Illustrating Collisions & Search List

Region ID1, VPN1 System-Wide Hashed Page Table
v
HaShi_ng Tagl (Region ID1, VPN1) | Physical Pagel | Attributesl Link ®
Function : :
T] :
Region ID2, VPN2

When collisions _
happen, entries Second Table (Search List)

are allocated in L Tag2 (Region ID2 , VPN2) | Physical Page2 | Attributes2 | NULL
the second table

Linked entries
are searched for
a matching tag

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Advantages / Disadvantages

“ Advantages of Hashed Page Table
< Table is only a small fraction of memory
<> Scales with physical memory, not with the virtual address space
< Sufficient number of entries to reduce collision probability
<> Region ID can be shared by multiple processes

<> No problem with sparse virtual address space

*» Disadvantages
<> Hashed page table entry is larger
< Collisions are unavoidable

<> Must traverse search list when collisions occur (can be long list)
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Presentation Outline

* What is Virtual Memory?

¢+ Fast Address Translation

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Address Translation and Protection

“* Program generates virtual addresses

<> Must translate virtual address on every memory access

<> Must check whether page in memory (page fault)
<> Must check protection (illegal access, invalid page)

Virtual Address

Virtual Page Number

Page offset

Address
Translation

v

Page Fault
lllegal Access

Physical Address

STUDENTS-HUB.com

Protection Check

Same Page Offset

A 4

Physical Page Address

Page offset

Uploaded By: Jibreel Bornat

Fast Address Translation

*» Address translation is expensive

<> Must translate each virtual address on every memory access

< Multilevel page table =» translation is several memory accesses

¢ Solution: Translation Lookaside Buffer (TLB)

< TLB = Cache for address translation
< TLB = Fast address translation

< TLB input = VA = Virtual Address

<> TLB output = PA = Physical Address
< I-TLB = |-Cache TLB

< D-TLB = D-Cache TLB
STUDENTS-HUB.com

Processor Core

A A

Y=
VA § S v VA
© I
I-TLB > = D-TLB
20
PA \ 4 E \ 4 \ 4 PA
I-Cache D-Cache

PA ! IBIock Block t | PA

Unified L2 Cache

Uploaded By: Jibreel Bornat

TLB Entries

*» TLB keeps track of recently accessed pages
< Virtual and Physical page numbers (fast address translation)
< Accessed and Dirty bits (whether page is accessed or modified)

< Access rights and Privilege level protection bits

+» Additional TLB fields

< Address Space Identifier (or Region ID)
= Allows multiple processes to be in the TLB at the same time
= Otherwise, TLB should be flushed on a context switch
< Global bit (G bit) for global pages that are shared by all processes

< Page size (PS) for variable page sizes

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

TLB Organization

“ TLB size can vary between 32 and 512 entries
<> Small TLBs are fully associative

<> Large TLBs are set associative
¢ Large system can have multi-level TLBs (L1 and L2)
“ Hit time is typically one clock cycle for small TLBs

< TLB Miss Penalty = few cycles to hundreds of clock cycles

<> Miss Rate = 0.01% to 1%
* Random, FIFO, or pseudo-LRU replacement (TLB miss)

“ TLB reach: maximum virtual space mapped by TLB
< Example: 64 TLB entries, 4 KB pages, one page per entry

<> TLB reach = 64 entries x 4 KB = 256 KB
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Fully Associative TLB (AMD Opteron)

Virtual page Page

number offset Tag = Virtual Page Number of TLB Entry

<36> <12>
<36> <28> :
V RW U/S D A Tag Physical address Check protection
. (R/W and U/S bits)
(Low-order 12 bits
-]] [T |] | |of address)
_ (L LA </112> - 40-bi
32 TLB entries for small pages 40-11’““" <28> physical
: / = address
8 TLB entries for large pages 4

(High-order 28 bits of address)

TLB hit: TLB Entry Found | |
i Copyright © 2012, Elsevier Inc.
Get physical page address All rights Reserved.
Fast single cycle translation
TLB miss: Must traverse page table = Slow translation (update TLB)
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Set Associative TLB (Intel Core i7)

Virtual Page Number3® Offset!? o
Tag! ndex®| Offset:2 48-bit Virtual Address

V Prot* @ Tag 3! Physical Page Address?4

>
| | |
Vil
TLB = 4-Way Set-Associative 41 inux
. v
123 TLB Entries = 32 X 4 ways Physical Page Address?4| Offset!2
Read/Write, User/Supervisor
Page Accessed, Page Dirty 36-bit Physical Address

Additional entries for large page size

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Second-Level TLRB

+» Second-Level L2 TLB is used when missin L1 TLB

L2 TLB is larger than I-TLB and D-TLB
< Provides more entries for address translation
< Missin L1, whichisahitin L2 TLB = Swap TLB entries
< Missin L1 and L2 TLBs = Page table address translation (slow)

Corei7 TLBs I-TLB D-TLB L2 TLB (unified)
Size 128 entries 64 entries 512 entries
Associativity 4-way 4-way 4-way
Replacement Pseudo-LRU Pseudo-LRU Pseudo-LRU
Access 1 cycle 1 cycle 6 cycles
Latency

Miss Penalty 7 cycles 7 cycles Hundreds of cycles

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Handling TLB Misses and Page Faults

“ TLB miss: No TLB entry matches the virtual address

*» TLB miss can be handled in software or in hardware
< Traverse the page table hierarchy (by OS handler or MMU)
< If page table entry in memory is valid, then reload it into the TLB

< If page not present in main memory then page fault

“ Page Fault: Causes a context switch
< Interrupt the program at the instruction that caused the page fault
= Save the process context in memory (PC and registers)
< Transfer control to the operating system to transfer the page
< Meanwhile, operating system schedules another process to run

< Later, restart the instruction that caused the page fault

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

TLB, Page Table, Cache Combinations

TLB | Page Table| Cache |Possible? Under what circumstances?
Hit Hit Hit Yes: this is what we want!
Hit Hit Miss Yes: TLB_hlt => page Fable IS not checked
Cache miss = block in memory
Miss Hit Hit Yes: TLB miss = entry in page table
Miss it Miss Yes: TLB_mlss > 4 entr_y In page table
Cache miss = block in memory
Miss Miss Miss Yes: Page fault =» page swapped out
. . NOT possible: TLB translation is not
Hit Miss - M :)
possible if page is not in memory
Miss Miss Hit NOT ppssmle:_ data not allowed in
cache if page is not in memory

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Address Translation Summary

Virtual Address Hardware
! Hardware or Software
Restart Instruction | Lookup Software (OS handler)
TLB
TLB Miss TLB Hit
¥ ¥
Traverse Check
Page Table Protection
Page Fault Deny Grant
V Access [,7 j Access
OS handler Invalid Page | Terminate | Physical
loads page | Program | Address
ll to Cache
Page present
Reload TLB |« in memory

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

Physical versus Virtual Caches

*» Physical cache is addressed with physical addresses
< Virtual addresses are generated by the processor

<> Address translation is required, which may increase the hit time

VA PA N PA (on miss)]
CPU > _TLB Physical Main
Core |, Data Cache § Data Memory

*» Virtual cache is addressed with virtual addresses

<> Address translation is not required for a hit (but only for a miss)

VA VA (on miss) S PA
CPU Virtual TLB ’l Main
Core [Data [Cache | _ Data Memory

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Virtual Cache Benefits/Drawbacks

s+ Benefits of a Virtual Cache
<> Address translation is not required for a cache hit

<> TLB is not along critical path: cache access time is reduced

“ Drawbacks of a Virtual Cache

< Protection bits must be associated with each cache block

< Flushing the virtual cache on a context switch
» Unless address space identifiers are included in the tags
= To avoid mixing virtual addresses of different processes

< Aliasing problem due to the sharing of physical pages
= Aliases: different virtual addresses map to same physical page
= Multiple copies of the same block in a virtual cache

» Updates make duplicate blocks inconsistent
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Aliases in Virtual-Address Caches

Process A Process B
Page Table Page Table
Aliases: VA, PA Shared
Different Virtual Addresses V% Page | PA 0
Map to same physical address = I VA,
e
Tag Data

Virtual Cache can have two
copies of the same block in VTagl
main memory.

Copy 1 of Data Block at Physical Address PA

Writes to first copy of the -
block in the cache are not VTag2 | Copy 2 of Data Block at Physical Address PA

visible to second copy!

+» General Solution: Disallow aliases to coexist In cache

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

TLB Translation during Indexing

*» To lookup a cache, we should ...
< Index the cache: Physical or Virtual address can be used

<> Compare tags: Physical or Virtual address can be used

¢ Virtual cache eliminates address translation for a hit

< However, causes problems (protection, flushing, and aliasing)

*+ Best combination for L1 cache
< Address translation starts concurrently with indexing
= Same page offset used in both virtual and physical address
» Use part of page offset for indexing =» limits cache size
< Compare tags using physical address (TLB output)

<> Ensure that each cache block has a unique physical address
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Parallel Access to TLB and L1 Cache

VA | Virtual Page Number (VPN) Page Offset <p bits>

‘l' Cache Index |Block Offset
TLB b
1 | L1 Cache
k
PA Physical Page Address > M Ways
Physical Tags ll

Page Offset = p bits = Page Size = 2° bytes

Block Offset = b bits = Block Size = 2° bytes

Cache Index = k bits = Cache Size = m ways x 2% x 2P bytes
Page Offset is identical in virtual and physical addresses

If (k + b) > p then Alias Problem =» Lower VPN bits used in cache index
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

Anti-Aliasing Techniques

*» Increase the Page Size
< Larger page = larger cache physical index =» larger cache
<> Shared pages should be large and aligned to avoid alias problem

< Requires OS and architectural support for large page size

** Increase Cache Associativity
< Increase cache capacity, without changing index (or page size)
< Maximum capacity of directly-mapped physical cache = page size

<> m-way set associative cache increases capacity by a factor of m

¢ Disallow aliases to coexist while processing a cache miss
< if (k + b) > p = Cache is virtually indexed =» Alias problem

< Examine L1 cache tags while processing a cache miss, if an alias is

found (with same physical tag) then invalidate block
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

AMD Opteron TLB and Cache

| Virtual address <48> |

! L1 Cache: 64KB
| i e | rsesacz | 2-way set associative, LRU
soa o o] Virtual index, Physical tag

| L1 cache index <9> I

TLB tag <36> TLB data <28>

To CPU

'
L2 TLB tag compare address <29> | L2 TLB index <7>]

L1 cache tag <28> L1 data <512>

I J
L2 TLB tag <29> L2 TLB data <28> [l _@._ -
- T I
5 [Physical address <40>] |_2 Cache: 1MB
- * 16 ways, Pseudo-LRU
| L2 tag compare address <24> l L2 cache index <10> [Block offset <6>]
[To CPU
L1 TLB: 40 entries
. . >~ L2 cache tag <24> L2 data <512>
Fully Associative ’
L2 TLB: 512 entries @ I [
4-way Set Associative SRR

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

AMD Opteron Memory Hierarchy

¢ Exclusion policy between L1 and L2
<> Block can existin L1 or L2 but not in both

<> Both D-cache and L2 use write-back with write-allocate

* L1 cache is pipelined, latency is 2 clock cycles
“* L1 TLB =40 entries, L2 TLB =512 entries

¢ L1 cache is virtually indexed and physically tagged

< Lower 3-bit of Virtual Page Number (VPN) are used in L1 index

** On a L1 cache miss, controller checks for alias in L1

<> 8 = 23 L1 cache tags per way are examined in parallel for an alias
during an L2 cache lookup.

< If an alias is found = the offending block is invalidated
STUDENTS-HUB.com Uploaded By: Jibreel Bornat

