Chapter 7.1, Problem 13E

Problem

Let $J5 = \{0, 1, 2, 3, 4\}$, and define functions $f: J5 \rightarrow J5$ and $g: J5 \rightarrow J5$ as follows: For each $x \in J5$, $f(x) = (x + 4)2 \mod 5$ and $g(x) = (x2 + 3x + 1) \mod 5$. Is f = g? Explain.

Step-by-step solution

Step 1 of 2 Consider the function $f: J_5 \rightarrow J_5$ and $g: J_5 \rightarrow J_5$ for all $x \in J_5$. Function f(x) and g(x) is defined as: $f(x) = (x+4)^2 \mod 5$ And, $g(x) = (x^2+3x+1) \mod 5$ Consider $J_5 = \{0,1,2,3,4\}$ To prove f = g,

Step 2 of 2

STUDENTS-HUB.com

x	$f(x) = (x+4)^2 \mod 5$	$g(x) = (x^2 + 3x + 1) \mod 5$
0	$f(0) = (4)^2 \mod 5$ = 16 mod 5 = 1	$g(0) = (1) \mod 5$ $= 1$
1	$f(1) = (1+4)^2 \mod 5$ = 0	$g(1) = (1+3+1) \mod 5$ = 0
2	$f(2) = (2+4)^2 \mod 5$ = 36 mod 5 = 1	$g(2) = (4+6+1) \mod 5$ = 11 mod 5 = 1
3	$f(3) = (3+4)^2 \mod 5$ = 49 mod 5 = 4	$g(3) = (9+9+1) \mod 5$ = 19 mod 5 = 4
4	$f(4) = (4+4)^2$ = 64 mod 5 = 4	$g(4) = (16+12+1) \mod 5$ = 29 mod 5 = 4

To compute f(x) and g(x) for all $x \in J_s$, as shown below:

The above table of values shows that f(x) = g(x), for all x in J_5 .

Hence proved