ENCS5337: Chip Design Verification
Spring 2024/2025

Stimuli Generation

Dr. Ayman Hroub

Many thanks to Dr. Kerstin Eder for most of the slides

SSSSSSSSSSSSSSSS

https://students-hub.com

Outline

= Motivation: Advanced Stimulus Generation
= Example: PowerPC processor

= |ssues In stimuli generation
— Level of stimuli, test length, etc.
= Randomness

= Constrained pseudo-random stimulus
generation

https://students-hub.com

Goals of Stimuli Generation

= Achieve all the items In the test scenarios matrix
of the verification plan
— Ensure that the scenarios in the matrix are happening

— Ensure that bugs are propagating to an existing
checker

= Hitting a bug without exposing it is worth nothing

= But also

— Hitting and exposing all the problems we did not think
about in the verification plan

— Ensure that nothing gets broken over time

SSSSSSSSSSSSSSSS

https://students-hub.com

Example — PowerPC Processor

= Black box view
— Interface to memory (via Clock Reset

caches) l l

» For data fetching and
storing

» For instruction fetching
InsTrucTioEE:>

PowerPC

— Interface to I/O devices T —

» For data fetching and
storing

= |nterrupts

— Miscellaneous interface
= Clocks

= Reset

STUDENTS-HUB.com

https://students-hub.com

Architectural View

= RISC (Reduced Instruction Set Computer) processor
— “Small” number of instructions (~400)
— One simple operation per instruction
— Fixed length instructions (32 bits = 1 word)
— Specific load and store instructions to access memory
= All other instructions use registers for operands
= Large register files
— 32 general purpose registers (GPR)
— 32 floating-point registers (FPR)
» Used only for floating-point operations
— Several special purpose registers
= Condition register, link register, status register, etc.

STUDENTS-HUB.com

https://students-hub.com

Microarchitectural View

SSSSSSSSSSSSSSSS

Multi-threaded

=

In-order execution Fetch
Four instructions wide v
_ Eetch Decode

v
- D_eCOde Dispatch
— Dispatch | | v v v v
Four execution units DataFetch '3*1 Fil 'Vll 5*1
— B —Branch Execute | B2| |R2| |[M2 S2
— S — Load Store v v v ¥
— R — Simple Arithmetic Write Back| B3| [R3| |[M3(574 S3

— M — Complex Arithmetic

I
lﬂﬂ

https://students-hub.com

Extracts from the Verification Plan

= Check that all pairs of instructions are executed
correctly together

— Basic architectural requirement
— Appears in most verification plans of processors

= Check that all forwarding mechanisms between
pipeline stages are working properly

— Basic microarchitectural requirement
— Source for many bugs in previous designs

SSSSSSSSSSSSSSSS

https://students-hub.com

Processor Verification Environment

Instr PowerPC m
Processor

Memory
Driver

J2A1Q
0/1

©
®
S
®
3
o)
-
o
S

SUoILoNJLSUT
J2A1Q
SUoILoNJLSUT

@
S
N
o O
—+
(@)
S

Memory
Generator

STUDENTS-HUB.com 8

https://students-hub.com

Issues In Stimuli Generation

= How many generators?

= Level of abstraction

= Online vs. offline generation
= Dynamic vs. static generation
= Test length

= Randomness

SSSSSSSSSSSSSSSS

https://students-hub.com

How Many Generators?

= Distributed generators
— Each interface has its own generator
— Each generator works on its own
— Advantages
= Simple
= Easy to reuse
— Disadvantages
» Hard to reach corner cases in coordinated fashion

PowerPC
Processor

Memory Driver

J2A1Q
J4sug

J2AIQ
O/1

Q
3>
®
S a
o =
=+
o
=3

J04DJ2U29
O/1

Memory Generator

STUDENTS-HUB.com 10

https://students-hub.com

How Many Generators?

= Single generator

— One generator controls all the interfaces

— Advantages
= All the interfaces can work together toward a common goal

— Disadvantages
= Complex
= Hard to reuse

PowerPC
Processor

Memory Driver

J2A1JQ
J4sug

J2AIQ
O/1

Unified Generator

STUDENTS-HUB.com 11

https://students-hub.com

How Many Generators?

= Synchronized generators
— Each interface has its own generator
— The generators share information and synchronize

— Advantages
= Can reuse each generator separately
= Can work together towards a common goal

PowerPC
Processor

Memory Driver

J2A1Q
J4sug

J2AIQ
O/1

Q
3>
®
S a
o =
=+
o
=3

J04DJ2U29
O/1

Memory Generator

STUDENTS-HUB.com 12

https://students-hub.com

Abstraction Level of Generation

Program or
Algorithmic Level

Sequence Level

Bit Level
(no abstraction)

T -
i

—<=l |

SSSSSSSSSSSSSSSS

Groups of System
sequences

across
time

Groups of
instructions

Groups of bits
Designer

Verification
Level

13

https://students-hub.com

Online Vs Offline Generation

SSSSSSSSSSSSSSSS

When to generate stimuli?

= Offline generation (pre-run):
— The entire stimuli are generated before the simulation
begins
— The generation and simulation can be two separated
processes

= Online generation (on-the-fly):
— Stimuli generation during simulation

— The next element is generated when needed by the
driver

— The generator must be part of the verification
environment

14

https://students-hub.com

Oftline Generation

= Why
— Can separate the generation from simulation
» Use external tools, emulation, ...

— Can use more complex algorithms for generation

* For example, generate out of order, e.g. instruction
sequences (processors) or action sequences (robotics)

= Why not

— Need to connect the generation output to the
verification environment

— Cannot use information directly from the DUV and
environment

STUDENTS-HUB.com 15

https://students-hub.com

Online Generation

= Why
— The generator can use information about the state of
the environment and DUV for improving the quality of
generation
» Makes reaching corner cases easier

— Generally small memory footprint

= Why not
— Must generate items in order
— Limited complexity
— Slows down simulation

SSSSSSSSSSSSSSSS

18

https://students-hub.com

Mixing online and offline Generation

= Online and offline generation can be mixed within a
verification environment

= Which designs would benefit from this combination?

= For example, in processor verification:

— Instruction streams are generated from high-level programs via
compilers, i.e. offline,

— but the interrupts are generated online, when the processor is in
an interesting state.

STUDENTS-HUB.com

19

https://students-hub.com

Dynamic vs. Static Generation

= |n static generation the generator is not aware of
the state of the DUV and the environment

— Generation decisions are based entirely on the internal
state of the generator

— The generator is aware of what and when it is allowed to
generate

* In dynamic generation the generator is fully aware
of the state of the DUV and the environment and
generates based on this information

— The generator can react to interesting states in the DUV

SSSSSSSS -HUB.com 20

https://students-hub.com

Dynamic Vs. Static Generation

= Dynamic generation is based on reaction while
static generation is based on planning

= |n general, reaction is harder than planning
— Time is a factor
— Unexpected events can get in the way

= Most generators use dynamic features lightly

— Observe and react to shallow or stable states and
resources
* For example, architectural registers

SSSSSSSSSSSSSSSS

22

https://students-hub.com

Offline Dynamic Generation

= Dynamic and static generation should not
be confused with online and offline
generation

= An offline generator can use dynamic
generation by using a reference model
that provides information about the state of
the DUV

— The level and accuracy of the information depends on
the abstraction level and accuracy of the reference

model

23

SSSSSSSSSSSSSSSS

https://students-hub.com

Test Length

= Two extreme approaches for selecting the test
length

= Use short tests

— The shortest tests that can fulfill the requirement in
the verification plan

— For the instruction pairs requirement use tests with
just two instructions

= Use long tests

— Combine many requirements in a single test
— Wrap a test with initial and ending sequences

SSSSSSSSSSSSSSSS

24

https://students-hub.com

Why Short Tests?

SSSSSSSSSSSSSSSS

Easy to create

Easy to debug

Easy to maintain

Short time to simulate each

25

https://students-hub.com

Why Long Tests?

SSSSSSSSSSSSSSSS

Need fewer tests

Less time to simulate

— Overall less time as we do not need to repeat the
Initialization sequence for every test ;)

Test Is not at or near the initial state most of the
time

Use less traveled paths and greater variety of
exploration

Reach target in more ways
— Often leads to reaching the target in unexpected ways

26

https://students-hub.com

Randomness - Motivation

= The first time we press the button a test is
created

= What happens when we press the button a
second time?

— The same test appears
=>» our stimuli generator is deterministic

Test
Specification

Test # 1
Add G1, G2, 63
Stimuli Mul 66, 69, 611
Generator Test # 1

Add 61, 62, G3

Mul G6, G9, 611

SSSSSSSSSSSSSSSS

https://students-hub.com

Random Stimuli Generation

Test #1
Test - Add 61, G2, G3
Test # 2
Fdiv F1, F2, F3
Stimuli Lw G6, (10)G9

Generator Test # 3

Fmul F1, F2, F3
Xor G6, 61, G2

The generated tests are
different !

SSSSSSSS -HUB.com 2 8

https://students-hub.com

Pure Random Generation

SSSSSSSSSSSSSSSS

The opposite end of the spectrum to deterministic
generation

The generator generates random sequences of
‘0O’s and ‘1's that are packed into instructions

Theoretically, this might seem like the ideal
solution

BUT practically,

not very useful for verification

— Most generated test cases are invalid

— Most valid test cases are not
Interesting

29

https://students-hub.com

Side Note — Pseudo Random

= When using random number generators, “random”
decisions are controlled by a seed

— Given the value of the seed, random decisions are
deterministic

= Pseudo random is essential in verification because
of the need to reproduce specific tests

— For example, to reproduce bugs

= Essential requirement for Pseudo Random Test
Generator:

— Need (at least) repeatability!
» Achieved by using the same seed to seed the generator.

SSSSSSSS -HUB.com 30

https://students-hub.com

Constrained Random Generation

= The stimuli generator Is
constrained to generate
— Valid tests

— Tests that meet the user
requests

= There are many (infinite
number of) tests that fulfill
these constraints

= The generator can choose any

SSSSSSSS -HUB.co 31

https://students-hub.com

Example — Instruction Pair Generation

= The test specification Is a test with an

Instruction followed by an Instruction
— Comes from the first extract of our verification
plan
= The test should look like B ——

= Everything else can be Start:
randomized

SSSSSSSSSSSSSSSS

32

https://students-hub.com

Random Decisions for add xor test

= Registers of add instruction
= Data of add instruction
= Registers of xor instruction
= Data of xor instruction

... but also
= Prelude sequence add_xor_test
= Epilogue sequence E—

= Start address of the program
= Processor operation mode
= Behavior of caches, /0O, ...

SSSSSSSSSSSSSSSS

https://students-hub.com

How To Make Random Decisions

= Pure random decisions
— Most tests will be invalid

= Constrained random decisions

— Limit random decisions to those that lead to
valid tests

— Choose uniformly among valid possibilities

— Result
= Generated tests are valid

= Most random decisions are not interesting
=» Small gain in test quality

= “Smart” constrained random decisions
— Bias decision toward interesting cases
— Can lead to significant improvement in test
guality

STUDENTS-HUB.com

https://students-hub.com

