
ENCS5337: Chip Design Verification

Spring 2024/2025

Stimuli Generation

Dr. Ayman Hroub

Many thanks to Dr. Kerstin Eder for most of the slides

STUDENTS-HUB.com

https://students-hub.com

2

Outline

 Motivation: Advanced Stimulus Generation

 Example: PowerPC processor

 Issues in stimuli generation

– Level of stimuli, test length, etc.

 Randomness

 Constrained pseudo-random stimulus

generation

STUDENTS-HUB.com

https://students-hub.com

3

Goals of Stimuli Generation

 Achieve all the items in the test scenarios matrix
of the verification plan
– Ensure that the scenarios in the matrix are happening

– Ensure that bugs are propagating to an existing
checker
 Hitting a bug without exposing it is worth nothing

 But also
– Hitting and exposing all the problems we did not think

about in the verification plan

– Ensure that nothing gets broken over time

STUDENTS-HUB.com

https://students-hub.com

4

Example – PowerPC Processor

 Black box view
– Interface to memory (via

caches)
 For instruction fetching

 For data fetching and
storing

– Interface to I/O devices
 For data fetching and

storing

 Interrupts

– Miscellaneous interface
 Clocks

 Reset

 …

PowerPC
Processor

Memory

Instructions

Data

I
/O

Clock Reset

STUDENTS-HUB.com

https://students-hub.com

5

Architectural View

 RISC (Reduced Instruction Set Computer) processor
– “Small” number of instructions (~400)

– One simple operation per instruction

– Fixed length instructions (32 bits = 1 word)

– Specific load and store instructions to access memory
 All other instructions use registers for operands

 Large register files
– 32 general purpose registers (GPR)

– 32 floating-point registers (FPR)
 Used only for floating-point operations

– Several special purpose registers
 Condition register, link register, status register, etc.

STUDENTS-HUB.com

https://students-hub.com

6

Microarchitectural View

 Multi-threaded

 In-order execution

 Four instructions wide
– Fetch

– Decode

– Dispatch

 Four execution units
– B – Branch

– S – Load Store

– R – Simple Arithmetic

– M – Complex Arithmetic

Dispatch

B1

B2

B3

R1

R2

R3

M1

M2

M3

S1

S2

S3
S4f S4b

Data Fetch

Execute

Write Back

Decode

Fetch

I Cache

D Cache

STUDENTS-HUB.com

https://students-hub.com

7

Extracts from the Verification Plan

 Check that all pairs of instructions are executed
correctly together
– Basic architectural requirement

– Appears in most verification plans of processors

 Check that all forwarding mechanisms between
pipeline stages are working properly
– Basic microarchitectural requirement

– Source for many bugs in previous designs

STUDENTS-HUB.com

https://students-hub.com

8

Processor Verification Environment

PowerPC
Processor

I
nstructions

D
rive

r

I
/O

D
rive

r

Memory
Driver

Instr I/O

D
ata

I
nstructions
G

e
ne

rator

I
/O

G
e
ne

rator

Memory
Generator

STUDENTS-HUB.com

https://students-hub.com

9

Issues in Stimuli Generation

 How many generators?

 Level of abstraction

 Online vs. offline generation

 Dynamic vs. static generation

 Test length

 Randomness

STUDENTS-HUB.com

https://students-hub.com

10

How Many Generators?

 Distributed generators
– Each interface has its own generator

– Each generator works on its own

– Advantages
 Simple

 Easy to reuse

– Disadvantages
 Hard to reach corner cases in coordinated fashion

PowerPC
Processor

I
nstr.

D
rive

r

I
/O

D
rive

r

Memory Driver

I
nstr.

G
e
ne

rator

I
/O

G
e
ne

rator

Memory Generator

STUDENTS-HUB.com

https://students-hub.com

11

How Many Generators?

 Single generator
– One generator controls all the interfaces

– Advantages
 All the interfaces can work together toward a common goal

– Disadvantages
 Complex

 Hard to reuse

PowerPC
Processor

I
nstr.

D
rive

r

I
/O

D
rive

r

Memory Driver

Unified Generator

STUDENTS-HUB.com

https://students-hub.com

12

How Many Generators?

 Synchronized generators
– Each interface has its own generator

– The generators share information and synchronize

– Advantages
 Can reuse each generator separately

 Can work together towards a common goal

PowerPC
Processor

I
nstr.

D
rive

r

I
/O

D
rive

r

Memory Driver

I
nstr.

G
e
ne

rator

I
/O

G
e
ne

rator

Memory Generator

STUDENTS-HUB.com

https://students-hub.com

13

Abstraction Level of Generation

DUV

Bit Level

(no abstraction)

Command & Data

instruction level
Groups of bits

Groups of

instructions

Groups of

sequences

across

time

Verification

Level

Designer

SystemProgram or

Algorithmic Level

Sequence Level

STUDENTS-HUB.com

https://students-hub.com

14

Online Vs Offline Generation

When to generate stimuli?

 Offline generation (pre-run):
– The entire stimuli are generated before the simulation

begins

– The generation and simulation can be two separated
processes

 Online generation (on-the-fly):
– Stimuli generation during simulation

– The next element is generated when needed by the
driver

– The generator must be part of the verification
environment

STUDENTS-HUB.com

https://students-hub.com

15

Offline Generation

 Why
– Can separate the generation from simulation

 Use external tools, emulation, …

– Can use more complex algorithms for generation
 For example, generate out of order, e.g. instruction

sequences (processors) or action sequences (robotics)

 Why not
– Need to connect the generation output to the

verification environment

– Cannot use information directly from the DUV and
environment

STUDENTS-HUB.com

https://students-hub.com

18

Online Generation

 Why
– The generator can use information about the state of

the environment and DUV for improving the quality of
generation
 Makes reaching corner cases easier

– Generally small memory footprint

 Why not
– Must generate items in order

– Limited complexity

– Slows down simulation

STUDENTS-HUB.com

https://students-hub.com

19

Mixing online and offline Generation

 Online and offline generation can be mixed within a

verification environment

 Which designs would benefit from this combination?

 For example, in processor verification:

– instruction streams are generated from high-level programs via

compilers, i.e. offline,

– but the interrupts are generated online, when the processor is in

an interesting state.

STUDENTS-HUB.com

https://students-hub.com

20

Dynamic vs. Static Generation

 In static generation the generator is not aware of
the state of the DUV and the environment
– Generation decisions are based entirely on the internal

state of the generator

– The generator is aware of what and when it is allowed to
generate

 In dynamic generation the generator is fully aware
of the state of the DUV and the environment and
generates based on this information
– The generator can react to interesting states in the DUV

STUDENTS-HUB.com

https://students-hub.com

22

Dynamic Vs. Static Generation

 Dynamic generation is based on reaction while

static generation is based on planning

 In general, reaction is harder than planning

– Time is a factor

– Unexpected events can get in the way

 Most generators use dynamic features lightly

– Observe and react to shallow or stable states and

resources

 For example, architectural registers

STUDENTS-HUB.com

https://students-hub.com

23

Offline Dynamic Generation

 Dynamic and static generation should not

be confused with online and offline

generation

 An offline generator can use dynamic

generation by using a reference model

that provides information about the state of

the DUV
– The level and accuracy of the information depends on

the abstraction level and accuracy of the reference

model

STUDENTS-HUB.com

https://students-hub.com

24

Test Length

 Two extreme approaches for selecting the test
length

 Use short tests
– The shortest tests that can fulfill the requirement in

the verification plan

– For the instruction pairs requirement use tests with
just two instructions

 Use long tests
– Combine many requirements in a single test

– Wrap a test with initial and ending sequences

STUDENTS-HUB.com

https://students-hub.com

25

Why Short Tests?

 Easy to create

 Easy to debug

 Easy to maintain

 Short time to simulate each

STUDENTS-HUB.com

https://students-hub.com

26

Why Long Tests?

 Need fewer tests

 Less time to simulate

– Overall less time as we do not need to repeat the

initialization sequence for every test ;)

 Test is not at or near the initial state most of the

time

 Use less traveled paths and greater variety of

exploration

 Reach target in more ways

– Often leads to reaching the target in unexpected ways

STUDENTS-HUB.com

https://students-hub.com

27

Randomness - Motivation

 The first time we press the button a test is

created

 What happens when we press the button a

second time?

– The same test appears

 our stimuli generator is deterministic

Stimuli
Generator

Test # 1

Add G1, G2, G3
Mul G6, G9, G11

…
Test # 1

Add G1, G2, G3
Mul G6, G9, G11

…

Test
Specification

STUDENTS-HUB.com

https://students-hub.com

28

Random Stimuli Generation

Stimuli
Generator

Test # 1

Add G1, G2, G3
Mul G6, G9, G11

…
Test # 2

Fdiv F1, F2, F3
Lw G6, (10)G9

…

Repeat
100 times

Test
Specification

Test # 3

Fmul F1, F2, F3
Xor G6, G1, G2

…

The generated tests are
different !

STUDENTS-HUB.com

https://students-hub.com

29

Pure Random Generation

 The opposite end of the spectrum to deterministic
generation

 The generator generates random sequences of
‘0’s and ‘1’s that are packed into instructions

 Theoretically, this might seem like the ideal
solution

 BUT practically,

not very useful for verification
– Most generated test cases are invalid

– Most valid test cases are not

interesting

STUDENTS-HUB.com

https://students-hub.com

30

Side Note – Pseudo Random

 When using random number generators, “random”

decisions are controlled by a seed

– Given the value of the seed, random decisions are

deterministic

 Pseudo random is essential in verification because

of the need to reproduce specific tests

– For example, to reproduce bugs

 Essential requirement for Pseudo Random Test

Generator:

– Need (at least) repeatability!

 Achieved by using the same seed to seed the generator.

STUDENTS-HUB.com

https://students-hub.com

31

Constrained Random Generation

 The stimuli generator is

constrained to generate

– Valid tests

– Tests that meet the user

requests

 There are many (infinite

number of) tests that fulfill

these constraints

 The generator can choose any

such test
STUDENTS-HUB.com

https://students-hub.com

32

Example – Instruction Pair Generation

 The test specification is a test with an add

instruction followed by an xor instruction

– Comes from the first extract of our verification

plan

 The test should look like

 Everything else can be

randomized

add_xor_test

Start:
…

Add ??, ??, ??
Xor ??, ??, ??
…

STUDENTS-HUB.com

https://students-hub.com

33

Random Decisions for add_xor_test

 Registers of add instruction

 Data of add instruction

 Registers of xor instruction

 Data of xor instruction

... but also

 Prelude sequence

 Epilogue sequence

 Start address of the program

 Processor operation mode

 Behavior of caches, I/O, …

 …

add_xor_test

Start:
…

Add ??, ??, ??
Xor ??, ??, ??
…

STUDENTS-HUB.com

https://students-hub.com

34

How To Make Random Decisions

 Pure random decisions
– Most tests will be invalid

 Constrained random decisions
– Limit random decisions to those that lead to

valid tests

– Choose uniformly among valid possibilities

– Result
 Generated tests are valid

 Most random decisions are not interesting
 Small gain in test quality

 “Smart” constrained random decisions
– Bias decision toward interesting cases

– Can lead to significant improvement in test

quality
STUDENTS-HUB.com

https://students-hub.com

