

Birzeit University Chemistry Department <u>CHEM133</u>

3rd Hour Exam

1st Sem. 2024-2025 Instructor: Dr. Hijazi Abu Ali

Time: 40 min.

- ۲
- Student Name:_____ Student No.:_____ Section No.:-----٢

Important note: There are (12) equally graded questions, please answer all of them.

Ε	D	С	В	Α	Q
					1
					2
					3
					4
					5
					6
					7
					8
					9
					10
					11
					12

GOOD LUCK

Please read each question carefully before you answer, and choose the best fit answer.

1. What type of chemical bond holds the atoms together within a water molecule?

- A)Ionic bondC)Polar covalent bondB)Nonpolar covalent bondD)Coordinate covalent bond
- 2. The number of lone electron pairs in the NO₂⁻ ion is ____.
 - A) 4 B) 5 C) 6 D) 7 E) 8

3. The number of resonance structures for the SeO₂ molecule that satisfy the octet rule is

- A) 1 B) 3 C) 2 D) 4 E) None of these
- 4. Calculate (in kJ) the standard enthalpy change ΔH° for the reaction written below, using the bond energies given.

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

Bond:	Bond ener	<u>gy (kJ/mol):</u>		
N≡N	945	6		
H-H	432			
N-H	391			
A) 060 leI	\mathbf{D}) 204 let	(1) 105 1	D) $204 kI$	E) 505 1-1
AJ -909 KJ	DJ -204 KJ	$C_{J} = 103 \text{ kJ}$	DJ 204 KJ	EJ 393 KJ

5. Which one of the following statements about atomic structure and quantum numbers is incorrect?

A) In a given atom, the maximum number of electrons having principal quantum number n = 3, is 18.

- B) The number of orbitals in a given *f* subshell is 7.
- C) For n = 4, the largest possible value of *l* is 3.
- D) For n = 4, the largest possible value of m_l is 2.
- E) The following set of quantum numbers for a single orbital is not allowed: n = 3, l = 1, $m_l = -2$.

6. Which of the following atoms has paramagnetic properties?

A) Li^+ B) Be C) P D) Ne E) Xe

7. Select the correct set of quantum numbers (n, l, m_l, m_s) for the highest energy electron in the ground state of potassium, K.

A) 4, 1, -1, ½ B) 4, 1, 0, ½ C) 4, 0, 1, ½ D) 4, 0, 0, ½ E) 4, 1, 1, ½

8. In which one of the following structures does the central atom have a formal charge of +2?

9. What is the molecular shape of CIF₄⁻ as predicted by the VSEPR theory?

A) square planar	B) square pyramidal	C) see-saw
D) distorted octahedral	E) distorted tetrahedral	

10. Use VSEPR theory to predict the electron group arrangement around iodine, the central atom in the ion IF₂⁻.

A) trigonal bipyramidal	B) distorted octahedral	C) distorted tetrahedral
D) trigonal planar	E) distorted bent	

11. Consider the following two molecules: CO₂ and CO₃⁻²:

The C-O bond energy in CO₂ is higher than the C-O bond energy in CO₃⁻²
The C-O bond order in CO₂ is less than the C-O bond order in CO₃⁻²
The C-O bond length in CO₂ is less than the C-O bond length in CO₃⁻²
The C-O bond in CO₂ is stronger than the C-O bond in CO₃⁻²
The CO₃⁻² ion is polar

A) 1, 2 and 5 are correct B) 2, 3 and 4 are correct C) 1, 3 and 4 are correct D) 2, 4 are correct

12. Three possible structures of the cyanate anion, NCO⁻ are shown. Calculate the formal charges on each of the nine atoms and choose the best correct answer.

A) Structure 2 is the most stable and favorableC) Structure 3 is the most stable and favorableD) The formal charge on the N atom in Structure 2 is -1

E) The oxidation number on the N atom in Structure 1 is -2