
ENCS5337: Chip Design Verification

Spring 2023/2024

Hardware Design Languages

Dr. Ayman Hroub

Many thanks to Dr. K. Eder and Dr. M. Mudawar for most of the slides

STUDENTS-HUB.com

https://students-hub.com

2

Hardware Description Languages (1)

▪ Describe the hardware structure and behavior of digital

systems in a textual form

▪ NOT another software programming language

▪ Most popular hardware description languages today (all are

IEEE standards) are Verilog, SystemVerilog, and VHDL

▪ They were built with simulation in mind

o Synthesis and other back-end purposes were added at a later stage

STUDENTS-HUB.com

https://students-hub.com

3

Hardware Description Languages (2)

▪ Designers used to draw schematics, then gate level netlist, then

Register Transfer Level

▪ Raising abstraction levels as designs get more complex and

faster ways to find bugs were required

▪ Abstracted design – Behavioral vs Synthesizable - for faster
simulation leading to finding bugs sooner than later

▪ Synthesis tools allow direct implementation from HDL code
(higher productivity, earlier bug finding, and easier debugging)

STUDENTS-HUB.com

https://students-hub.com

4

HDL vs. Programming Languages

3 major new concepts of HDLs compared to software
programming languages:

▪ Connectivity:
– Ability to describe a design using simpler blocks and then connecting

them together.

▪ Time:
– Can specify a delay (in time units of simulator): (WHY?)

▪ and #2 (Y3, In3, Sel1, Sel0);

▪ Concurrency is always assumed! (for structural style)
– No matter in which order primitives/components are specified, a change

in value of any input signal activates the component.

– If 2 or more components are activated concurrently, they perform their
actions concurrently.

– Order of specification does not influence order of activation!

– (NOTE: Statements inside behavioral blocks may be sequential)

▪ synthesizability
STUDENTS-HUB.com

https://students-hub.com

5

Example: Divide by 2

Resource: Cadence
STUDENTS-HUB.com

https://students-hub.com

6

VHDL Background

▪ VHSIC Hardware Description Language.

o VHSIC - Very High Speed Integrated Circuit.

▪ •Developed by the U.S. Department of Defense (1981)

o 1986 rights where given to IEEE

o Became a standard and published in 1987

STUDENTS-HUB.com

https://students-hub.com

7

Verilog (1)

▪ Verilog = "Verifying Logic "

▪ Invented as a simulation language in 1983 by Phil Moorby

▪ Opened to public in 1990 by Cadence Design Systems

▪ Became an IEEE standard in 1995 (Verilog-95)

▪ Revised and upgraded in 2001 (Verilog-2001)

▪ Revised also in 2005 (Verilog-2005)

STUDENTS-HUB.com

https://students-hub.com

8

Verilog (2)

▪ Verilog allows designers to describe hardware at different

levels

o Can describe anything from a single gate to a full

computer system

▪ Verilog is supported by the majority of electronic design

tools

▪ Verilog can be used for logic simulation and synthesis

STUDENTS-HUB.com

https://students-hub.com

9

SystemVerilog (1)

▪ SystemVerilog is a Hardware specification, design and

Verification language having features inherited from

Verilog and C++ - Object Oriented Programming

▪ It is a solution to close the gap between design and

verification language

▪ It is the (next generation of Verilog) designed to improve

abstraction of Verilog

o Abstraction levels

o Data types

o Verification constructs
STUDENTS-HUB.com

https://students-hub.com

10

SystemVerilog (2)

▪ Complete verification environment to improve the

verification process:

o Constrained Random Generation

o Assertion Based Verification

o Coverage Driven Verification

▪ Provides hardware-modeling features, which improve the

RTL design productivity and simplify the design process

STUDENTS-HUB.com

https://students-hub.com

11

Verilog vs SystemVerilog

STUDENTS-HUB.com

https://students-hub.com

12

Logic Simulation

▪ Logic simulator interprets the Verilog (HDL) description

▪ Produces timing diagrams

▪ Predicts how the hardware will behave before it is

fabricated

▪ Simulation allows the detection of functional errors in a

design without having to physically implement the circuit

▪ Errors detected during the simulation can be corrected

by modifying the appropriate statements in the Verilog

code

▪ Simulating and verifying a design requires a test bench

▪ The test bench is also written in Verilog
STUDENTS-HUB.com

https://students-hub.com

13

Logic Synthesis

▪ Logic synthesis is similar to translating a program

▪ However, the output of logic synthesis is a digital circuit

▪ A digital circuit modeled in Verilog can be translated into a list

of components and their interconnections, called netlist

▪ Synthesis can be used to fabricate an integrated circuit

▪ Synthesis can also target a Field Programmable Gate Array

(FPGA)

▪ Logic simulation and synthesis are automated using special

software, called Electronic Design Automation (EDA) tools

STUDENTS-HUB.com

https://students-hub.com

14

Verilog Code Structure

▪ Verilog only has one building block

o Module: modules are connected through their ports
similarly as in VHDL

o Usually there is only one module per file.

o A top level invokes instances of other modules.

o Modules can be specified behaviorally or structurally.

STUDENTS-HUB.com

https://students-hub.com

15

Verilog Module

▪ A digital circuit is described in Verilog as a set of modules

▪ A module is declared using the module keyword

▪ A module is terminated using the endmodule keyword

▪ A module has a name and a list of input and output ports

▪ A module is described by a group of statements

STUDENTS-HUB.com

https://students-hub.com

16

Verilog Coding Styles

▪ Structural

▪ Dataflow

▪ Behavioural (best for verification)

STUDENTS-HUB.com

https://students-hub.com

17

Structural and Dataflow Modeling

▪ Structural Modeling using module instantiation. It describes

the structure of a circuit with modules at different levels

▪ Dataflow Modeling using Continuous Assignment

– Used mostly for describing Boolean equations and

combinational logic

– Verilog provides a rich set of operators

– Can describe: adders, comparators, multiplexers, etc.

– Synthesis tool can map a dataflow model into a target

technology

STUDENTS-HUB.com

https://students-hub.com

18

Behavioral Modeling
▪ Behavioral Modeling using Procedural Blocks and Statements

– Describes what the circuit does at a functional and

algorithmic level

– Encourages designers to rapidly create a prototype

– Can be verified easily with a simulator

– Some procedural statements are synthesizable (Others are

NOT)

STUDENTS-HUB.com

https://students-hub.com

19

Example of a Module in Verilog
// Description of a simple circuit

module simple_circuit(input A, B, C, output x, y);

wire w;

and g1(w, A, B);

not g2(y, C);

or g3(x, w, y);

endmodule

The input keyword defines the input ports: A, B, C

The output keyword defines the output ports: x, y

The wire keyword defines an internal connection: w

The structure of simple_circuit is defined by three gates: and, not, or

Each gate has an optional name, followed by the gate output then inputs

A

B

C

w

x

y

g1

g2

g3

Order is not

important

STUDENTS-HUB.com

https://students-hub.com

20

Verilog Syntax
▪ Keywords: have special meaning in Verilog

o Many keywords: module, input, output, wire, and, or, etc.

o Keywords cannot be used as identifiers

▪ Identifiers: are user-defined names for modules, ports, etc.

▪ Verilog is case-sensitive: A and a are different names

▪ Comments: can be specified in two ways (similar to C)

o Single-line comments begin with // and terminate at end of line

o Multi-line comments are enclosed between /* and */

▪ White space: space, tab, newline can be used freely in Verilog

▪ Operators: operate on variables (similar to C: ~ & | ^ + - etc.)
STUDENTS-HUB.com

https://students-hub.com

21

Verilog Operators
Bitwise Operators

~a Bitwise NOT

a & b Bitwise AND

a | b Bitwise OR

a ^ b Bitwise XOR

a ~^ b Bitwise XNOR

a ^~ b Same as ~^

Arithmetic Operators

a + b ADD

a – b Subtract

-a Negate

a * b Multiply

a / b Divide

a % b Remainder

Shift Operators

a << n Shift Left

a >> n Shift Right

Reduction Operators

&a AND all bits

|a OR all bits

^a XOR all bits

~&a NAND all bits

~|a NOR all bits

~^a XNOR all bits

Relational Operators

a == b Equality

a != b Inequality

a < b Less than

a > b Greater than

a <= b Less or equal

a >= b Greater or equal

Reduction operators produce a 1-bit result

Relational operators produce a 1-bit result

{a, b} concatenates the bits of a and b

Miscellaneous Operators

sel?a:b Conditional

{a, b} Concatenate

STUDENTS-HUB.com

https://students-hub.com

22

Bit Vectors in Verilog
▪ A Bit Vector is multi-bit declaration that uses a single name

▪ A Bit Vector is specified as a Range [msb:lsb]

▪ msb is most-significant bit and lsb is least-significant bit

▪ Examples:

input [15:0] A; // A is a 16-bit input vector

output [0:15] B; // Bit 0 is most-significant bit

wire [3:0] W; // Bit 3 is most-significant bit

▪ Bit select: W[1] is bit 1 of W

▪ Part select: A[11:8] is a 4-bit select of A with range [11:8]

▪ The part select range must be consistent with vector declaration

STUDENTS-HUB.com

https://students-hub.com

23

Reduction Operators
module Reduce

(input [3:0] A, B, output X, Y, Z);

// A, B are input vectors, X, Y, Z are 1-bit outputs

// X = A[3] | A[2] | A[1] | A[0];

assign X = |A;

// Y = B[3] & B[2] & B[1] & B[0];

assign Y = &B;

// Z = X & (B[3] ^ B[2] ^ B[1] ^ B[0]);

assign Z = X & (^B);

endmodule

STUDENTS-HUB.com

https://students-hub.com

24

Concatenation Operator { }
module Concatenate

(input [7:0] A, B, output [7:0] X, Y, Z);

// A, B are input vectors, X, Y, Z are output vectors

// X = A is right-shifted 3 bits using { } operator

assign X = {3'b000, A[7:3]};

// Y = A is right-rotated 3 bits using { } operator

assign Y = {A[2:0], A[7:3]};

// Z = selecting and concatenating bits of A and B

assign Z = {A[5:4], B[6:3], A[1:0]};

endmodule

STUDENTS-HUB.com

https://students-hub.com

25

Integer Literals (Constant Values)
▪ Syntax: [size]['base]value

size (optional) is the number of bits in the value

'base can be: 'b(binary), 'o(octal), 'd(decimal), or 'h(hex)

value can be in binary, octal, decimal, or hexadecimal

▪ If the 'base is not specified then decimal value

▪ Examples:

8'b1011_1101 (8-bit binary), 'hA3F0 (16-bit hexadecimal)

16'o56377 (16-bit octal), 32'd999 (32-bit decimal)

▪ The underscore _ can be used to enhance readability of value

▪ When size is fewer bits than value, upper bits are truncated

STUDENTS-HUB.com

https://students-hub.com

26

If Statement
▪ The if statement is procedural

▪ Can only be used inside a procedural block

▪ Syntax:

if (expression) statement

[else statement]

▪ The else part is optional

A statement can be simple or compound

A compound statement is surrounded by begin ... end

▪ if statements can be nested

▪ Can be nested under if or under else part

STUDENTS-HUB.com

https://students-hub.com

27

Modeling a 2x1 Multiplexer
// Behavioral Modeling of a Parametric 2x1 Mux

module Mux2 #(parameter n = 1)

(input [n-1:0] A, B, input sel,

output reg [n-1:0] Z);

// Output Z must be of type reg

// Sensitivity list = @(A, B, sel)

always @(A, B, sel) begin

if (sel == 0) Z = A;

else Z = B;

end

endmodule

Z
n

sel

0A
n

1B
n

STUDENTS-HUB.com

https://students-hub.com

28

Case Statement
▪ The case statement is procedural (used inside always block)

▪ Syntax:

case (expression)

case_item1: statement

case_item2: statement

. . .

default: statement

endcase

The default case is optional

A statement can be simple or compound

A compound statement is surrounded by begin ... end

STUDENTS-HUB.com

https://students-hub.com

29

Modeling a Mux with a Case Statement
module Mux4 #(parameter n = 1)

(input [n-1:0] A, B, C, D, input [1:0] sel,

output reg [n-1:0] Z);

// @(*) is @(A, B, C, D, sel)

always @(*) begin

case (sel)

2'b00: Z = A;

2'b01: Z = B;

2'b10: Z = C;

default: Z = D;

endcase

end

endmodule

Z
n

sel

0A
n

1B
n

2C
n

3D
n

2

STUDENTS-HUB.com

https://students-hub.com

30

Conditional Operator

▪ Syntax:

Boolean_expr ? True_expression : False_expression

If Boolean_expr is true then select True_expression

Else select False_Expression

▪ Examples:

assign max = (a>b)? a : b; // maximum of a and b

assign min = (a>b)? b : a; // minimum of a and b

▪ Conditional operators can be nested

STUDENTS-HUB.com

https://students-hub.com

31

Basic Gates
▪ Basic gates: and, nand, or, nor, xor, xnor, not, buf

▪ Verilog define these gates as keywords

▪ Each gate has an optional name

▪ Each gate has an output (listed first) and one or more inputs

▪ The not and buf gates can have only one input

▪ Examples:

and g1(x,a,b); // 2-input and gate named g1

or g2(y,a,b,c); // 3-input or gate named g2

nor g3(z,a,b,c,d); // 4-input nor gate named g3

inputsoutputname
STUDENTS-HUB.com

https://students-hub.com

33

Continuous Assignment

▪ Used in Dataflow coding style.
– assign #4 Out = In1 & In2;

▪ Keyword assign followed by optional delay declaration
▪ LHS (target) can be net (scalar or vector) or concatenation

of nets
– NO registers allowed as target for assignment. Only output port or

wire

▪ Assignment symbol: =
▪ RHS is an expression.
▪ Implicit continuous assignment: wire x = ...;

▪ Conditional assignment:
– assign Out = Sel ? In1 : In0;

– If Sel is 1 then In1 is assigned to Out; if Sel is 0 then Out is In0.

STUDENTS-HUB.com

https://students-hub.com

34

Continuous Assignment: Execution

▪ Continuous assignments are always active.

▪ The order of the assign statements does not matter

▪ Concurrency:
– When any of the operands on RHS changes, assignment is

evaluated.

– Several assignments can be executed concurrently.

– Race conditions can occur!
▪ Two or more assignments, which operate on the same data, read and

write the data concurrently.

▪ Result, which might be erroneous, depends on which assignment
does what when.

▪ Delays specify time between change of operand on RHS and
assignment of resulting value to LHS target.

– assign #4 Out = In1 & In2;
STUDENTS-HUB.com

https://students-hub.com

35

TestBench

▪ In order to simulate a circuit, it is necessary to apply inputs to

the circuit for the simulator to generate an output response

▪ A testbench is written to verify the correctness of a DUT

▪ A testbench is written as a Verilog module with no ports

▪ It instantiates the DUT

▪ It provides inputs to the DUT

▪ Test benches can be complex and lengthy, depending on the

complexity of the design

STUDENTS-HUB.com

https://students-hub.com

36

Example of a Simple TestBench
module Test_Full_Adder; // No need for Ports

reg a, b, c; // variable inputs

wire sum, cout;// wire outputs

// Instantiate the module to be tested

Full_Adder FA (a, b, c, cout, sum);

initial begin // initial block

a=0; b=0; c=0; // at t=0 time units

#20 a=1; b=1;// at t=20 time units

#20 a=0; b=0; c=1; // at t=40 time units

#20 a=1; c=0;// at t=60 time units

#20 $finish; // at t=80 finish simulation

end // end of initial block

endmodule

STUDENTS-HUB.com

https://students-hub.com

37

Nets and Variables
Verilog has two major data types:

1. Net data types: are connections between parts of a design

2. Variable data types: can store data values

▪ The wire is a net data type (physical connection)

– A wire cannot store the value of a procedural assignment

– However, a wire can be driven by continuous assignment

▪ The reg is a variable data type

– Can store the value of a procedural assignment

– However, cannot be driven by continuous assignment

– Other variable types: integer, time, real, and realtime

STUDENTS-HUB.com

https://students-hub.com

38

Verilog Signals

▪ Verilog signals:

o nets (used for “connections”, no storage capacity)

o registers (storage capacity, similar to variables in
software programming languages)

▪ Verilog external signals:

o ports (input, output or inout, port connecting rules)

STUDENTS-HUB.com

https://students-hub.com

39

Verilog Four-Valued Logic

▪ Verilog Value Set consists of four basic values:

0 – represents a logic zero, or false condition

1 – represents a logic one, or true condition

X – represents an unknown logic value

Z – represents a high-impedance value

x or X represents an unknown or uninitialized value

z or Z represents the output of a disabled tri-state buffer

STUDENTS-HUB.com

https://students-hub.com

40

The initial Statement

▪ The initial statement is a procedural block of statements

▪ The body of the initial statement surrounded by begin-end

▪ It is sequential, like a sequential block in a programming language

▪ Procedural assignments are used inside the initial block

▪ Procedural assignment statements are executed in sequence

Syntax: #delay variable = expression;

▪ Procedural assignment statements can be delayed

▪ The optional #delay indicates that the variable (of reg type)

should be updated after the time delay
STUDENTS-HUB.com

https://students-hub.com

41

Running the Simulator

Examine the waveforms to verify the correctness of your design

At t = 0 ns, the values of cout and sum are unknown (shown in red)

The cout and sum signals are delayed by 7ns and 6ns, respectively

STUDENTS-HUB.com

https://students-hub.com

42

Modular Design: 4-bit Adder
▪ Uses identical copies of a full adder to build a large adder

▪ Simple to implement: the cell (iterative block) is a full adder

▪ Carry-out of cell i becomes carry-in to cell (i +1)

▪ Can be extended to add any number of bits

c0Full

Adder

a0 b0

s0

c1Full

Adder

a1 b1

s1

c2Full

Adder

a2 b2

s2

c3Full

Adder

a3 b3

s3

c4

STUDENTS-HUB.com

https://students-hub.com

43

4-bit Adder using Module Instantiation

module Adder4 (input a0, a1, a2, a3, b0, b1, b2, b3, c0,

output s0, s1, s2, s3, c4

);

wire c1, c2, c3; // Internal wires for the carries

// Instantiate Four Full Adders: FA0, FA1, FA2, FA3

// The ports are matched by position

Full_Adder FA0 (a0, b0, c0, c1, s0);

Full_Adder FA1 (a1, b1, c1, c2, s1);

Full_Adder FA2 (a2, b2, c2, c3, s2);

Full_Adder FA3 (a3, b3, c3, c4, s3);

// Can also match the ports by name

// Full Adder FA0 (.a(a0), .b(b0), .c(c0), .cout(c1),
.sum(s0));

endmoduleSTUDENTS-HUB.com

https://students-hub.com

44

Module Instantiation
▪ Module declarations are like templates

▪ Module instantiation is like creating an object

▪ Modules are instantiated inside other modules at different levels

▪ Module instantiation defines the structure of a digital design

▪ It produces module instances at different levels

▪ The ports of a module instance must match those declared

▪ The matching of the ports can be done by name or by position

STUDENTS-HUB.com

https://students-hub.com

45

Writing a Test Bench for the 4-bit Adder
module Adder4_TestBench; // No Ports

reg a0, a1, a2, a3; // variable inputs

reg b0, b1, b2, b3, cin; // variable inputs

wire s0, s1, s2, s3, cout; // wire outputs

// Instantiate the module to be tested

Adder4 Add4 (a0,a1,a2,a3, b0,b1,b2,b3, cin, s0,s1,s2,s3, cout);

initial begin // initial block

a0=0;a1=0;a2=0;a3=0; // at t=0

b0=0;b1=0;b2=0;b3=0;cin=0; // at t=0

#100 a1=1;a3=1;b2=1;b3=1; // at t=100

#100 a0=1;a1=0;b1=1;b2=0; // at t=200

#100 a2=1;a3=0;cin=1; // at t=300

#100 $finish; // at t=400 finish simulation

end // end of initial block

endmodule

STUDENTS-HUB.com

https://students-hub.com

46

Behavioural Coding Style

▪ Behavior:
– Actions a circuit is supposed to perform when it is active.

▪ Most advanced coding style: flexible and high-level
– closest to programming languages

– allows use of conditional statements, case statements, loops, etc.

Best for verification, but by no means ideal...

▪ Algorithmic description: Need ”variables” similar to PLs!
– Abstraction of data storage elements - register objects:

▪ reg R; one bit register - default value x before first assignment
▪ time T; can store/manipulate simulation time
▪ integer N; by default at least 32 bit - stores values signed
▪ real R; default value is 0

STUDENTS-HUB.com

https://students-hub.com

47

Behavioural Constructs for Coding

▪ Conditionals:
if (expression true) true branch;
else false branch;

▪ Case:
case ({_,...,_})

pattern : ...;

...

default : ...;

endcase

▪ Loops: forever, repeat, while, for

STUDENTS-HUB.com

https://students-hub.com

48

Mux421: Behavioural Coding Example

module mux421_behavioural (Out, In0, In1, In2, In3, Sel0, Sel1);

output Out;

input In0, In1, In2, In3, Sel0, Sel1;

reg Out;

always @ (Sel1 or Sel0 or In0 or In1 or In2 or In3)

begin

case ({Sel1,Sel0})

2’b00 : Out = In0;

2’b01 : Out = In1;

2’b10 : Out = In2;

2’b11 : Out = In3;

default : Out = 1’bx;

endcase

end

endmodule // mux421_behavioural

STUDENTS-HUB.com

https://students-hub.com

49

Mux421: Behavioural Coding Example

module mux421_behavioural (Out, In0, In1, In2, In3, Sel0, Sel1);

output Out;

input In0, In1, In2, In3, Sel0, Sel1;

reg Out;

always @ (Sel1,Sel0,In0,In1,In2,In3) // Verilog 2001 style

begin

case ({Sel1,Sel0})

2’b00 : Out = In0;

2’b01 : Out = In1;

2’b10 : Out = In2;

2’b11 : Out = In3;

default : Out = 1’bx;

endcase

end

endmodule // mux421_behavioural

STUDENTS-HUB.com

https://students-hub.com

50

Behavioural Blocks

▪ initial and always

– Can’t be nested.

– Block containing several statements must be grouped using:
▪ begin ... end (sequential)

▪ initial block:
– Used to initialize variables (registers).

– Executed at (simulation) time 0. Only once!

▪ always block:
– Starts executing at time 0.

– Contents is executed in infinite loop.

▪ Means: Execution repeats as long as simulation is running.

– Multiple blocks are all executed concurrently from time 0.

STUDENTS-HUB.com

https://students-hub.com

51

Assignment in Behavioural Coding

Assignment in behavioral coding style is procedural:

#5 C = #10 A+B;

▪ LHS (target) must be a register (reg, integer, real or time) -
not a net, a bit or part of a vector of registers.

▪ NO assign keyword!

▪ Must be contained within a behavioral (i.e. initial or
always) block.

▪ NOT always active!
– Target register value is only changed when procedural assignment is

executed according to sequence contained in block.

▪ Delays: indicate time that simulator waits from ”finding” the
assignment to executing it.

STUDENTS-HUB.com

https://students-hub.com

52

Blocking Assignment

(... as opposed to continuous assignment from
dataflow coding style.)

▪ Sequential initialization assignment.

reg A;

reg [7:0] Vector;

integer Count;

initial

begin

A = 1’b0;

Vector = 8’b0;

Count = 0;

end

STUDENTS-HUB.com

https://students-hub.com

53

Timing Control Evaluation

1. Find procedural assignment

2. Wait 5 time units

3. Perform A+B

4. Wait 10 time units

5. Assign result to C

▪ So, what is the difference between:
– #10 C = A+B and

– C = #10 A+B?

#5 C = #10 A+B;

Assignment delay
Intra-assignment delay

STUDENTS-HUB.com

https://students-hub.com

54

Events and Wait

▪ Events mark changes in nets and registers, e.g.
raising/falling edge of clock.
– @ negedge means from any value to 0
– @ posedge means from any value to 1
– @ clk always activates when clock changes

▪ Wait statement:
– wait (condition) stmt;

▪ wait (EN) #5 C = A + B;

– waits for EN to be 1 before #5 C = A + B;

▪ Use wait to block execution by not specifying a
statement!
– wait (EN); ...

STUDENTS-HUB.com

https://students-hub.com

55

Sensitivity List

▪ Allows to suspend always blocks.

▪ Block executes and suspends until signal (one or more)
in sensitivity list changes.

▪ NOTE: or is used to make statement sensitive to
multiple signals or events.

▪ (Don’t use sensitivity list to express a logical condition!)

▪ Common mistake:
– Forgetting to add relevant signals to sensitivity list!

always @(sensitivity list) <begin> <procedural stments> <end>

always @ (posedge Clk or EN)

begin ... end

always @ (Sel1,Sel2) // Verilog 2001 style

begin ... end

STUDENTS-HUB.com

https://students-hub.com

56

Non-blocking Assignments
▪ Concurrency can be introduced into sequential

statements.
– Delay is counted down before assignment,
– BUT control is passed to next statement immediately.

▪ Non-blocking Assignments allow to model multiple
concurrent data transfers after common event.

▪ A blocking assignment would force sequential execution.

A <= #1 1; B <= #2 0; (non-blocking) A x 1 1 1

B x x 0 0

Time: 0 1 2 3

A = #1 1; B = #2 0; (blocking) A x 1 1 1

B x x x 0

Time: 0 1 2 3

STUDENTS-HUB.com

https://students-hub.com

57

Approaches to Assignment - II

reg [7:0] MyReg;

initial

begin

MyReg <= #50 8’hFF; // pass control, wait, assign

MyReg <= #50 8’h01;

MyReg <= #50 8’h2F;

MyReg <= #50 8’h00;

#250 $finish;

end

▪ Sequential with non-blocking assignment (<=)
Time: 0 50 100 150 200 250

MyReg[7:0] XX

Important when driving input into a DUV in a testbench!

Race Condition!

?? ?? ?? ?? ??

STUDENTS-HUB.com

https://students-hub.com

58

Approaches to Assignment - III

reg [7:0] MyReg;

initial

begin

MyReg <= #50 8’hFF; // pass control, wait, assign

MyReg <= #100 8’h01;

MyReg <= #150 8’h2F;

MyReg <= #200 8’h00;

#250 $finish;

end

▪ Sequential with non-blocking assignment (<=)
Time: 0 50 100 150 200 250

MyReg[7:0] XX FF 01 2F 00 00

Important when driving input into a DUV in a testbench!

STUDENTS-HUB.com

https://students-hub.com

59

Approaches to Assignment - IV

reg [7:0] MyReg;

initial

begin

#50 MyReg = 8’hFF; // wait, assign, pass control

#50 MyReg = 8’h01;

#50 MyReg = 8’h2F;

#50 MyReg = 8’h00;

#250 $finish;

end

▪ Sequential with blocking assignment (=)
Time: 0 50 100 150 200 250

MyReg[7:0] XX FF 01 2F 00 00

Important when driving input into a DUV in a testbench!

STUDENTS-HUB.com

https://students-hub.com

60

Verilog Coding Guidelines

1. When modeling combinational logic, use blocking assignments

2. When modeling sequential logic, use non-blocking assignments

3. When modeling both sequential and combinational logic within

the same always block, use non-blocking assignments

4. Do NOT mix blocking with non-blocking assignments in the same

always block

5. Do NOT make assignments to the same variable from more than

one always block

STUDENTS-HUB.com

https://students-hub.com

61

Tasks and Functions

▪ Both are purely behavioural.
– Can’t define nets inside them.

– Can use logical variables, registers, integers and reals.

▪ Must be declared within a module.
– Are local to this module.

– To share tasks/functions in several modules, specify declaration
in separate module and use ‘include directive.

▪ Timing (simulation time)
– Tasks:

▪ No restriction on use of timing; engineer specifies execution.

– Functions:

▪ Execute in ZERO sim time units; no timing/event control allowed.

STUDENTS-HUB.com

https://students-hub.com

62

Task Example

task factorial;

output [31:0] f;

input [3:0] n;

integer count; // local variable

begin

f = 1;

for (count=n; count>0; count=count-1)

f = f * count;

end

endtask

▪ Invoke task: < task name > (list of arguments);
– Declaration order determines order of arguments when task is called!

STUDENTS-HUB.com

https://students-hub.com

63

Function Example

function ParityCheck;

input [3:0] Data;

begin

ParityCheck = ˆData; // bit-wise xor reduction

end

endfunction

▪ Result is by default a 1 bit register assigned to implicitly declared
local variable that has same name as function.

▪ Function calls:
– Are either assigned to a variable, or

– occur in an expression that is assigned to a variable,

– or occur as an argument of another function call.

STUDENTS-HUB.com

https://students-hub.com

64

Comparing Tasks with Functions

Tasks Functions

Timing can be non-zero sim

time

execute in 0 sim time

Calling other

tasks or

functions

no limit;

may enable functions

may not call tasks but may call

another function

No recursion!

Arguments any number;

any type;

can’t return result

at least one input;

no output/inout;

always results in single return value

Purpose modularize code react to some input with single

response;

only combinatorial code;

use as operands in expressions

STUDENTS-HUB.com

https://students-hub.com

65

System Tasks and Functions

▪ More than 100 Verilog system tasks/functions.

▪ Can be used in any module without explicit

include directive.

▪ Syntax: $< keyword >

▪ Most important tasks for verification:

– $display, $monitor

– $time, $stop, $finish

– (Also with files: $fopen, $fdisplay)

STUDENTS-HUB.com

https://students-hub.com

66

Summary

▪ Verilog HDL IEEE Standard 1364-2001
– Signals: internal and external (ports)

– Different coding styles:
▪ structural

▪ dataflow

▪ behavioural

▪ SystemVerilog builds on IEEE 1364-2005

▪ HDLs: Connectivity, Time and Concurrency

STUDENTS-HUB.com

https://students-hub.com

