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Hardware Description Languages (1)

▪ Describe the hardware structure and behavior of digital 

systems in a textual form

▪ NOT another software programming language

▪ Most popular hardware description languages today (all are 

IEEE standards) are Verilog, SystemVerilog, and VHDL

▪ They were built with simulation in mind

o Synthesis and other back-end purposes were added at a later stage
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Hardware Description Languages (2)

▪ Designers used to draw schematics, then gate level netlist, then 

Register Transfer Level 

▪ Raising abstraction levels as designs get more complex and 

faster ways to find bugs were required

▪ Abstracted design – Behavioral vs Synthesizable - for faster 
simulation leading to finding bugs sooner than later

▪ Synthesis tools allow direct implementation from HDL code 
(higher productivity, earlier bug finding, and easier debugging)
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HDL vs. Programming Languages

3 major new concepts of HDLs compared to software 
programming languages:

▪ Connectivity:
– Ability to describe a design using simpler blocks and then connecting 

them together.

▪ Time:
– Can specify a delay (in time units of simulator): (WHY?)

▪ and #2 (Y3, In3, Sel1, Sel0);

▪ Concurrency is always assumed! (for structural style)
– No matter in which order primitives/components are specified, a change 

in value of any input signal activates the component.

– If 2 or more components are activated concurrently, they perform their 
actions concurrently.

– Order of specification does not influence order of activation!

– (NOTE: Statements inside behavioral blocks may be sequential)

▪ synthesizability
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Example: Divide by 2

Resource: Cadence
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VHDL Background 

▪ VHSIC Hardware Description Language.

o VHSIC - Very High Speed Integrated Circuit.

▪ •Developed by the U.S. Department of Defense (1981) 

o 1986 rights where given to IEEE 

o Became a standard and published in 1987
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Verilog (1)

▪ Verilog = "Verifying Logic "

▪ Invented as a simulation language in 1983 by Phil Moorby

▪ Opened to public in 1990 by Cadence Design Systems

▪ Became an IEEE standard in 1995 (Verilog-95)

▪ Revised and upgraded in 2001 (Verilog-2001)

▪ Revised also in 2005 (Verilog-2005)
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Verilog (2)

▪ Verilog allows designers to describe hardware at different 

levels

o Can describe anything from a single gate to a full 

computer system

▪ Verilog is supported by the majority of electronic design 

tools

▪ Verilog can be used for logic simulation and synthesis
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SystemVerilog (1)

▪ SystemVerilog is a Hardware specification, design and 

Verification language having features inherited from 

Verilog and C++ - Object Oriented Programming 

▪ It is a solution to close the gap between design and 

verification language 

▪ It is the (next generation of Verilog) designed to improve 

abstraction of Verilog

o Abstraction levels

o Data types

o Verification constructs 
STUDENTS-HUB.com

https://students-hub.com


10

SystemVerilog (2)

▪ Complete verification environment to improve the 

verification process:

o Constrained Random Generation

o Assertion Based Verification

o Coverage Driven Verification

▪ Provides hardware-modeling features, which improve the 

RTL design productivity and simplify the design process
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Verilog vs SystemVerilog
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Logic Simulation

▪ Logic simulator interprets the Verilog (HDL) description

▪ Produces timing diagrams

▪ Predicts how the hardware will behave before it is 

fabricated

▪ Simulation allows the detection of functional errors in a 

design without having to physically implement the circuit

▪ Errors detected during the simulation can be corrected 

by modifying the appropriate statements in the Verilog 

code

▪ Simulating and verifying a design requires a test bench

▪ The test bench is also written in Verilog
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Logic Synthesis

▪ Logic synthesis is similar to translating a program

▪ However, the output of logic synthesis is a digital circuit

▪ A digital circuit modeled in Verilog can be translated into a list 

of components and their interconnections, called netlist

▪ Synthesis can be used to fabricate an integrated circuit

▪ Synthesis can also target a Field Programmable Gate Array 

(FPGA)

▪ Logic simulation and synthesis are automated using special 

software, called Electronic Design Automation (EDA) tools
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Verilog Code Structure

▪ Verilog only has one building block 

o Module: modules are connected through their ports 
similarly as in VHDL

o Usually there is only one module per file.

o A top level invokes instances of other modules.

o Modules can be specified behaviorally or structurally.
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Verilog Module

▪ A digital circuit is described in Verilog as a set of modules

▪ A module is declared using the module keyword

▪ A module is terminated using the endmodule keyword

▪ A module has a name and a list of input and output ports

▪ A module is described by a group of statements
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Verilog Coding Styles

▪ Structural

▪ Dataflow

▪ Behavioural (best for verification)
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Structural and Dataflow Modeling

▪ Structural Modeling using module instantiation. It describes 

the structure of a circuit with modules at different levels

▪ Dataflow Modeling using Continuous Assignment 

– Used mostly for describing Boolean equations and 

combinational logic

– Verilog provides a rich set of operators

– Can describe: adders, comparators, multiplexers, etc.

– Synthesis tool can map a dataflow model into a target 

technology
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Behavioral Modeling
▪ Behavioral Modeling using Procedural Blocks and Statements

– Describes what the circuit does at a functional and 

algorithmic level

– Encourages designers to rapidly create a prototype

– Can be verified easily with a simulator

– Some procedural statements are synthesizable (Others are 

NOT)
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Example of a Module in Verilog
// Description of a simple circuit

module simple_circuit(input A, B, C, output x, y);

wire w;

and g1(w, A, B);

not g2(y, C);

or g3(x, w, y);

endmodule

The input keyword defines the input ports: A, B, C

The output keyword defines the output ports: x, y

The wire keyword defines an internal connection: w

The structure of simple_circuit is defined by three gates: and, not, or

Each gate has an optional name, followed by the gate output then inputs

A

B

C

w

x

y

g1

g2

g3

Order is not

important
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Verilog Syntax
▪ Keywords: have special meaning in Verilog

o Many keywords: module, input, output, wire, and, or, etc.

o Keywords cannot be used as identifiers

▪ Identifiers: are user-defined names for modules, ports, etc.

▪ Verilog is case-sensitive: A and a are different names

▪ Comments: can be specified in two ways (similar to C)

o Single-line comments begin with // and terminate at end of line

o Multi-line comments are enclosed between /* and */

▪ White space: space, tab, newline can be used freely in Verilog

▪ Operators: operate on variables (similar to C: ~ & | ^ + - etc.)
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Verilog Operators
Bitwise Operators

~a Bitwise NOT

a & b Bitwise AND

a | b Bitwise OR

a ^ b Bitwise XOR

a ~^ b Bitwise XNOR

a ^~ b Same as ~^

Arithmetic Operators

a + b ADD

a – b Subtract

-a Negate

a * b Multiply

a / b Divide

a % b Remainder

Shift Operators

a << n Shift Left

a >> n Shift Right

Reduction Operators

&a AND all bits

|a OR all bits

^a XOR all bits

~&a NAND all bits

~|a NOR all bits

~^a XNOR all bits

Relational Operators

a == b Equality

a != b Inequality

a < b Less than

a > b Greater than

a <= b Less or equal

a >= b Greater or equal

Reduction operators produce a 1-bit result

Relational operators produce a 1-bit result

{a, b} concatenates the bits of a and b

Miscellaneous Operators

sel?a:b Conditional

{a, b} Concatenate
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Bit Vectors in Verilog
▪ A Bit Vector is multi-bit declaration that uses a single name

▪ A Bit Vector is specified as a Range [msb:lsb]

▪ msb is most-significant bit and lsb is least-significant bit

▪ Examples:

input [15:0] A; // A is a 16-bit input vector

output [0:15] B; // Bit 0 is most-significant bit

wire [3:0]  W; // Bit 3 is most-significant bit

▪ Bit select:  W[1] is bit 1 of W

▪ Part select: A[11:8] is a 4-bit select of A with range [11:8]

▪ The part select range must be consistent with vector declaration
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Reduction Operators
module Reduce

( input [3:0] A, B, output X, Y, Z );

// A, B are input vectors, X, Y, Z are 1-bit outputs

// X = A[3] | A[2] | A[1] | A[0];

assign X = |A;

// Y = B[3] & B[2] & B[1] & B[0];

assign Y = &B;

// Z = X & (B[3] ^ B[2] ^ B[1] ^ B[0]);

assign Z = X & (^B);

endmodule
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Concatenation Operator { }
module Concatenate

( input [7:0] A, B, output [7:0] X, Y, Z );

// A, B are input vectors, X, Y, Z are output vectors

// X = A is right-shifted 3 bits using { } operator

assign X = {3'b000, A[7:3]};

// Y = A is right-rotated 3 bits using { } operator

assign Y = {A[2:0], A[7:3]};

// Z = selecting and concatenating bits of A and B

assign Z = {A[5:4], B[6:3], A[1:0]};

endmodule

STUDENTS-HUB.com

https://students-hub.com


25

Integer Literals (Constant Values)
▪ Syntax: [size]['base]value

size (optional) is the number of bits in the value

'base can be: 'b(binary), 'o(octal), 'd(decimal), or 'h(hex)

value can be in binary, octal, decimal, or hexadecimal

▪ If the 'base is not specified then decimal value

▪ Examples:

8'b1011_1101 (8-bit binary), 'hA3F0 (16-bit hexadecimal)

16'o56377 (16-bit octal), 32'd999 (32-bit decimal)

▪ The underscore _ can be used to enhance readability of value

▪ When size is fewer bits than value, upper bits are truncated
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If Statement
▪ The if statement is procedural

▪ Can only be used inside a procedural block

▪ Syntax:

if (expression) statement

[ else statement ]

▪ The else part is optional

A statement can be simple or compound

A compound statement is surrounded by begin ... end

▪ if statements can be nested

▪ Can be nested under if or under else part

STUDENTS-HUB.com

https://students-hub.com


27

Modeling a 2x1 Multiplexer
// Behavioral Modeling of a Parametric 2x1 Mux

module Mux2 #(parameter n = 1)

( input [n-1:0] A, B, input sel,

output reg [n-1:0] Z);

// Output Z must be of type reg

// Sensitivity list = @(A, B, sel)

always @(A, B, sel) begin

if (sel == 0) Z = A;

else Z = B;

end

endmodule

Z
n

sel

0A
n

1B
n
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Case Statement
▪ The case statement is procedural (used inside always block)

▪ Syntax:

case (expression)

case_item1: statement

case_item2: statement

. . .

default: statement

endcase

The default case is optional

A statement can be simple or compound

A compound statement is surrounded by begin ... end
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Modeling a Mux with a Case Statement
module Mux4 #(parameter n = 1)

( input [n-1:0] A, B, C, D, input [1:0] sel,

output reg [n-1:0] Z );

// @(*) is @(A, B, C, D, sel)

always @(*) begin

case (sel)

2'b00:   Z = A;

2'b01:   Z = B;

2'b10:   Z = C;

default: Z = D;

endcase

end

endmodule

Z
n

sel

0A
n

1B
n

2C
n

3D
n

2
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Conditional Operator

▪ Syntax:

Boolean_expr ? True_expression : False_expression

If Boolean_expr is true then select True_expression

Else select False_Expression

▪ Examples:

assign max = (a>b)? a : b; // maximum of a and b

assign min = (a>b)? b : a; // minimum of a and b

▪ Conditional operators can be nested
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Basic Gates
▪ Basic gates: and, nand, or, nor, xor, xnor, not, buf

▪ Verilog define these gates as keywords

▪ Each gate has an optional name

▪ Each gate has an output (listed first) and one or more inputs

▪ The not and buf gates can have only one input

▪ Examples:

and g1(x,a,b); // 2-input and gate named g1

or  g2(y,a,b,c); // 3-input or  gate named g2

nor g3(z,a,b,c,d); // 4-input nor gate named g3

inputsoutputname
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Continuous Assignment

▪ Used in Dataflow coding style.
– assign #4 Out = In1 & In2;

▪ Keyword assign followed by optional delay declaration
▪ LHS (target) can be net (scalar or vector) or concatenation 

of nets
– NO registers allowed as target for assignment. Only output port or 

wire

▪ Assignment symbol: =
▪ RHS is an expression.
▪ Implicit continuous assignment: wire x = ...;

▪ Conditional assignment:
– assign Out = Sel ? In1 : In0;

– If Sel is 1 then In1 is assigned to Out; if Sel is 0 then Out is In0.
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Continuous Assignment: Execution

▪ Continuous assignments are always active.

▪ The order of the assign statements does not matter

▪ Concurrency:
– When any of the operands on RHS changes, assignment is 

evaluated.

– Several assignments can be executed concurrently.

– Race conditions can occur!
▪ Two or more assignments, which operate on the same data, read and 

write the data concurrently.

▪ Result, which might be erroneous, depends on which assignment 
does what when.

▪ Delays specify time between change of operand on RHS and 
assignment of resulting value to LHS target.

– assign #4 Out = In1 & In2;
STUDENTS-HUB.com

https://students-hub.com


35

TestBench

▪ In order to simulate a circuit, it is necessary to apply inputs to 

the circuit for the simulator to generate an output response

▪ A testbench is written to verify the correctness of a DUT

▪ A testbench is written as a Verilog module with no ports

▪ It instantiates the DUT

▪ It provides inputs to the DUT

▪ Test benches can be complex and lengthy, depending on the 

complexity of the design
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Example of a Simple TestBench
module Test_Full_Adder; // No need for Ports

reg a, b, c; // variable inputs

wire sum, cout;// wire outputs

// Instantiate the module to be tested

Full_Adder FA (a, b, c, cout, sum);

initial begin // initial block

a=0; b=0; c=0; // at t=0  time units

#20 a=1; b=1;// at t=20 time units

#20 a=0; b=0; c=1; // at t=40 time units

#20 a=1; c=0;// at t=60 time units

#20 $finish; // at t=80 finish simulation

end // end of initial block

endmodule
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Nets and Variables
Verilog has two major data types:

1. Net data types: are connections between parts of a design

2. Variable data types: can store data values

▪ The wire is a net data type (physical connection)

– A wire cannot store the value of a procedural assignment

– However, a wire can be driven by continuous assignment

▪ The reg is a variable data type

– Can store the value of a procedural assignment

– However, cannot be driven by continuous assignment

– Other variable types: integer, time, real, and realtime
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Verilog Signals

▪ Verilog signals: 

o nets (used for “connections”, no storage capacity)

o registers (storage capacity, similar to variables in 
software programming languages)

▪ Verilog external signals:

o ports (input, output or inout, port connecting rules)
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Verilog Four-Valued Logic

▪ Verilog Value Set consists of four basic values:

0 – represents a logic zero, or false condition

1 – represents a logic one, or true condition

X – represents an unknown logic value

Z – represents a high-impedance value

x or X represents an unknown or uninitialized value

z or Z represents the output of a disabled tri-state buffer
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The initial Statement

▪ The initial statement is a procedural block of statements

▪ The body of the initial statement surrounded by begin-end

▪ It is sequential, like a sequential block in a programming language

▪ Procedural assignments are used inside the initial block

▪ Procedural assignment statements are executed in sequence

Syntax: #delay variable = expression;

▪ Procedural assignment statements can be delayed

▪ The optional #delay indicates that the variable (of reg type) 

should be updated after the time delay
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Running the Simulator

Examine the waveforms to verify the correctness of your design

At t = 0 ns, the values of cout and sum are unknown (shown in red)

The cout and sum signals are delayed by 7ns and 6ns, respectively
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Modular Design: 4-bit Adder
▪ Uses identical copies of a full adder to build a large adder

▪ Simple to implement: the cell (iterative block) is a full adder

▪ Carry-out of cell i becomes carry-in to cell (i +1)

▪ Can be extended to add any number of bits

c0Full

Adder

a0 b0

s0

c1Full

Adder

a1 b1

s1

c2Full

Adder

a2 b2

s2

c3Full

Adder

a3 b3

s3

c4
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4-bit Adder using Module Instantiation

module Adder4 (input a0, a1, a2, a3, b0, b1, b2, b3, c0,

output s0, s1, s2, s3, c4

);

wire c1, c2, c3; // Internal wires for the carries

// Instantiate Four Full Adders: FA0, FA1, FA2, FA3

// The ports are matched by position

Full_Adder FA0 (a0, b0, c0, c1, s0);

Full_Adder FA1 (a1, b1, c1, c2, s1);

Full_Adder FA2 (a2, b2, c2, c3, s2);

Full_Adder FA3 (a3, b3, c3, c4, s3);

// Can also match the ports by name

// Full Adder FA0 (.a(a0), .b(b0), .c(c0), .cout(c1), 
.sum(s0));

endmoduleSTUDENTS-HUB.com
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Module Instantiation
▪ Module declarations are like templates

▪ Module instantiation is like creating an object

▪ Modules are instantiated inside other modules at different levels

▪ Module instantiation defines the structure of a digital design

▪ It produces module instances at different levels

▪ The ports of a module instance must match those declared

▪ The matching of the ports can be done by name or by position
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Writing a Test Bench for the 4-bit Adder
module Adder4_TestBench; // No Ports

reg a0, a1, a2, a3; // variable inputs

reg b0, b1, b2, b3, cin; // variable inputs

wire s0, s1, s2, s3, cout; // wire outputs

// Instantiate the module to be tested

Adder4 Add4 (a0,a1,a2,a3, b0,b1,b2,b3, cin, s0,s1,s2,s3, cout);

initial begin // initial block

a0=0;a1=0;a2=0;a3=0; // at t=0

b0=0;b1=0;b2=0;b3=0;cin=0; // at t=0

#100 a1=1;a3=1;b2=1;b3=1; // at t=100

#100 a0=1;a1=0;b1=1;b2=0; // at t=200

#100 a2=1;a3=0;cin=1; // at t=300

#100 $finish; // at t=400 finish simulation

end // end of initial block

endmodule
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Behavioural Coding Style

▪ Behavior:
– Actions a circuit is supposed to perform when it is active.

▪ Most advanced coding style: flexible and high-level
– closest to programming languages

– allows use of conditional statements, case statements, loops, etc.

Best for verification, but by no means ideal...

▪ Algorithmic description: Need ”variables” similar to PLs!
– Abstraction of data storage elements - register objects:

▪ reg R; one bit register - default value x before first assignment
▪ time T; can store/manipulate simulation time
▪ integer N; by default at least 32 bit - stores values signed
▪ real R; default value is 0
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Behavioural Constructs for Coding

▪ Conditionals:
if (expression true) true branch; 
else false branch;

▪ Case:
case ({_,...,_})

pattern : ...;

...

default : ...;

endcase

▪ Loops: forever, repeat, while, for

STUDENTS-HUB.com

https://students-hub.com


48

Mux421: Behavioural Coding Example

module mux421_behavioural (Out, In0, In1, In2, In3, Sel0, Sel1);

output Out;

input In0, In1, In2, In3, Sel0, Sel1;

reg Out;

always @ (Sel1 or Sel0 or In0 or In1 or In2 or In3)

begin

case ({Sel1,Sel0})

2’b00 : Out = In0;

2’b01 : Out = In1;

2’b10 : Out = In2;

2’b11 : Out = In3;

default : Out = 1’bx;

endcase

end

endmodule // mux421_behavioural
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Mux421: Behavioural Coding Example

module mux421_behavioural (Out, In0, In1, In2, In3, Sel0, Sel1);

output Out;

input In0, In1, In2, In3, Sel0, Sel1;

reg Out;

always @ (Sel1,Sel0,In0,In1,In2,In3) // Verilog 2001 style

begin

case ({Sel1,Sel0})

2’b00 : Out = In0;

2’b01 : Out = In1;

2’b10 : Out = In2;

2’b11 : Out = In3;

default : Out = 1’bx;

endcase

end

endmodule // mux421_behavioural
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Behavioural Blocks

▪ initial and always

– Can’t be nested.

– Block containing several statements must be grouped using:
▪ begin ... end (sequential)

▪ initial block:
– Used to initialize variables (registers).

– Executed at (simulation) time 0. Only once!

▪ always block:
– Starts executing at time 0.

– Contents is executed in infinite loop.

▪ Means: Execution repeats as long as simulation is running.

– Multiple blocks are all executed concurrently from time 0.
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Assignment in Behavioural Coding

Assignment in behavioral coding style is procedural:

#5 C = #10 A+B;

▪ LHS (target) must be a register (reg, integer, real or time) -
not a net, a bit or part of a vector of registers.

▪ NO assign keyword!

▪ Must be contained within a behavioral (i.e. initial or 
always) block.

▪ NOT always active!
– Target register value is only changed when procedural assignment is 

executed according to sequence contained in block.

▪ Delays: indicate time that simulator waits from ”finding” the 
assignment to executing it.
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Blocking Assignment

(... as opposed to continuous assignment from 
dataflow coding style.)

▪ Sequential initialization assignment.

reg A;

reg [7:0] Vector;

integer Count;

initial

begin

A = 1’b0;

Vector = 8’b0;

Count = 0;

end
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Timing Control Evaluation

1. Find procedural assignment

2. Wait 5 time units

3. Perform A+B

4. Wait 10 time units

5. Assign result to C

▪ So, what is the difference between:
– #10 C = A+B and

– C = #10 A+B?

#5 C = #10 A+B;

Assignment delay
Intra-assignment delay
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Events and Wait

▪ Events mark changes in nets and registers, e.g. 
raising/falling edge of clock.
– @ negedge means from any value to 0
– @ posedge means from any value to 1
– @ clk always activates when clock changes

▪ Wait statement:
– wait (condition) stmt;

▪ wait (EN) #5 C = A + B;

– waits for EN to be 1 before #5 C = A + B;

▪ Use wait to block execution by not specifying a 
statement!
– wait (EN); ...
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Sensitivity List

▪ Allows to suspend always blocks.

▪ Block executes and suspends until signal (one or more) 
in sensitivity list changes.

▪ NOTE: or is used to make statement sensitive to 
multiple signals or events.

▪ (Don’t use sensitivity list to express a logical condition!)

▪ Common mistake:
– Forgetting to add relevant signals to sensitivity list!

always @(sensitivity list) <begin> <procedural stments> <end>

always @ (posedge Clk or EN) 

begin ... end

always @ (Sel1,Sel2) // Verilog 2001 style

begin ... end
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Non-blocking Assignments
▪ Concurrency can be introduced into sequential 

statements.
– Delay is counted down before assignment,
– BUT control is passed to next statement immediately.

▪ Non-blocking Assignments allow to model multiple 
concurrent data transfers after common event.

▪ A blocking assignment would force sequential execution.

A <= #1 1; B <= #2 0; (non-blocking)                    A x 1 1 1

B x x 0 0

Time: 0 1 2 3

A = #1 1; B = #2 0; (blocking)                                A x 1 1 1   

B x x x 0

Time: 0 1 2 3
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Approaches to Assignment - II

reg [7:0] MyReg;

initial

begin

MyReg <= #50 8’hFF; // pass control, wait, assign

MyReg <= #50 8’h01;

MyReg <= #50 8’h2F;

MyReg <= #50 8’h00;

#250 $finish;

end

▪ Sequential with non-blocking assignment (<=) 
Time:      0   50  100 150 200 250

MyReg[7:0] XX

Important when driving input into a DUV in a testbench!

Race Condition!

??   ??  ??  ??  ??
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Approaches to Assignment - III

reg [7:0] MyReg;

initial

begin

MyReg <= #50  8’hFF; // pass control, wait, assign

MyReg <= #100 8’h01;

MyReg <= #150 8’h2F;

MyReg <= #200 8’h00;

#250 $finish;

end

▪ Sequential with non-blocking assignment (<=)
Time:      0  50 100 150 200 250

MyReg[7:0] XX FF 01  2F  00  00

Important when driving input into a DUV in a testbench!
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Approaches to Assignment - IV

reg [7:0] MyReg;

initial

begin

#50 MyReg = 8’hFF; // wait, assign, pass control

#50 MyReg = 8’h01;

#50 MyReg = 8’h2F;

#50 MyReg = 8’h00;

#250 $finish;

end

▪ Sequential with blocking assignment (=)
Time:      0  50 100 150 200 250

MyReg[7:0] XX FF 01  2F  00  00

Important when driving input into a DUV in a testbench!
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Verilog Coding Guidelines

1. When modeling combinational logic, use blocking assignments

2. When modeling sequential logic, use non-blocking assignments

3. When modeling both sequential and combinational logic within 

the same always block, use non-blocking assignments

4. Do NOT mix blocking with non-blocking assignments in the same 

always block

5. Do NOT make assignments to the same variable from more than 

one always block
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Tasks and Functions

▪ Both are purely behavioural.
– Can’t define nets inside them.

– Can use logical variables, registers, integers and reals.

▪ Must be declared within a module.
– Are local to this module.

– To share tasks/functions in several modules, specify declaration 
in separate module and use ‘include directive.

▪ Timing (simulation time)
– Tasks:

▪ No restriction on use of timing; engineer specifies execution.

– Functions:

▪ Execute in ZERO sim time units; no timing/event control allowed.
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Task Example

task factorial;

output [31:0] f;

input [3:0] n;

integer count; // local variable

begin

f = 1;

for (count=n; count>0; count=count-1)

f = f * count;

end

endtask

▪ Invoke task: < task name > (list of arguments);
– Declaration order determines order of arguments when task is called!
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Function Example

function ParityCheck;

input [3:0] Data;

begin

ParityCheck = ˆData; // bit-wise xor reduction

end

endfunction

▪ Result is by default a 1 bit register assigned to implicitly declared 
local variable that has same name as function.

▪ Function calls:
– Are either assigned to a variable, or

– occur in an expression that is assigned to a variable,

– or occur as an argument of another function call.
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Comparing Tasks with Functions

Tasks Functions

Timing can be non-zero sim 

time

execute in 0 sim time

Calling other 

tasks or 

functions

no limit;

may enable functions

may not call tasks but may call 

another function

No recursion!

Arguments any number; 

any type; 

can’t return result

at least one input;

no output/inout;

always results in single return value

Purpose modularize code react to some input with single 

response;

only combinatorial code;

use as operands in expressions
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System Tasks and Functions

▪ More than 100 Verilog system tasks/functions.

▪ Can be used in any module without explicit 

include directive.

▪ Syntax: $< keyword >

▪ Most important tasks for verification:

– $display, $monitor

– $time, $stop, $finish

– (Also with files: $fopen, $fdisplay)
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Summary

▪ Verilog HDL IEEE Standard 1364-2001
– Signals: internal and external (ports)

– Different coding styles:
▪ structural

▪ dataflow

▪ behavioural

▪ SystemVerilog builds on IEEE 1364-2005

▪ HDLs: Connectivity, Time and Concurrency
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