ENCS5337: Chip Design Verification
Spring 2023/2024

Hardware Design Languages

Dr. Ayman Hroub

Many thanks to Dr. K. Eder and Dr. M. Mudawar for most of the slides

https://students-hub.com

Hardware Description Languages (1)

= Describe the hardware structure and behavior of digital
systems in a textual form

= NOT another software programming language

= Most popular hardware description languages today (all are
IEEE standards) are Verilog, SystemVerilog, and VHDL

= They were built with simulation in mind

o Synthesis and other back-end purposes were added at a later stage

https://students-hub.com

Hardware Description Languages (2)

= Designers used to draw schematics, then gate level netlist, then
Register Transfer Level

= Raising abstraction levels as designs get more complex and
faster ways to find bugs were required

= Abstracted design — Behavioral vs Synthesizable - for faster
simulation leading to finding bugs sooner than later

= Synthesis tools allow direct implementation from HDL code
(higher productivity, earlier bug finding, and easier debugging)

https://students-hub.com

HDL vs. Programming Languages

3 major new concepts of HDLs compared to software
programming languages:

= Connectivity:

— Ability to describe a design using simpler blocks and then connecting
them together.

= Time:
— Can specify a delay (in time units of simulator): (WHY?)
= and #2 (Y3, In3, Sell, Sel0);

= Concurrency Is always assumed! (for structural style)

— No matter in which order primitives/components are specified, a change
in value of any input signal activates the component.

— If 2 or more components are activated concurrently, they perform their
actions concurrently.

— Order of specification does not influence order of activation!
— (NOTE: Statements inside behavioral blocks may be sequential)

: synthe5|zab|I|ty

STUDENTS-HUB.com 4

https://students-hub.com

Example: Divide by 2

Behavioral Block executed on
@ 4 every change in din
always in) .
din dout
dout = din/2 ; 7 I()” l

“always” code block

loops forever

T
at the posn]ve edge of ck

always @ (posedge clk) din =4%=—p| SR1 d q |=4%pdout

dout <= din >> 1 ;

Special “nonblocking”

assignment

Structural Instance array “op”

FDL op[3:0] of cell type “FD1” L,
.D({1'b0,din[3:1]}), ..op[3:0] —ri—ip dout
.CP(clk), .Q(dout)); din —o—p {|...FR1 .

clk =

Resource: Cadence

STUDENTS-HUB.com

https://students-hub.com

VHDL Backgrounad

= VHSIC Hardware Description Language.

o VHSIC - Very High Speed Integrated Circuit.

= +Developed by the U.S. Department of Defense (1981)
o 1986 rights where given to IEEE

o Became a standard and published in 1987

SSSSSSSSSSSSSSSS

https://students-hub.com

Verilog (1)

= Verilog = "Verifying Logic "

= Invented as a simulation language in 1983 by Phil Moorby
= Opened to public in 1990 by Cadence Design Systems

= Became an IEEE standard in 1995 (Verilog-95)

* Revised and upgraded in 2001 (Verilog-2001)

* Revised also in 2005 (Verilog-2005)

SSSSSSSSSSSSSSSS

https://students-hub.com

Verilog (2)

= Verilog allows designers to describe hardware at different
levels

o Can describe anything from a single gate to a full

computer system

= Verilog is supported by the majority of electronic design
tools

= Verilog can be used for logic simulation and synthesis

SSSSSSSSSSSSSSSS

https://students-hub.com

SystemVerilog (1)

= SystemVerilog is a Hardware specification, design and
Verification language having features inherited from
Verilog and C++ - Object Oriented Programming

= Itis a solution to close the gap between design and
verification language

= Itis the (next generation of Verilog) designed to improve
abstraction of Verilog

o Abstraction levels
o Data types

o Verification constructs

SSSSSSSSSSSSSSSS

https://students-hub.com

SystemVerilog (2)

= Complete verification environment to improve the
verification process:

o Constrained Random Generation
o Assertion Based Verification

o Coverage Driven Verification

* Provides hardware-modeling features, which improve the
RTL design productivity and simplify the design process

SSSSSSSSSSSSSSSS

10

https://students-hub.com

Verilog vs SystemVerilog

SystemVerilog

Verilog-1995 =

modules $finish $fopen $fclose initial wire reg begin-end + = * |/
parameters Sdisplay Swrite disable integer real ° while %
function/tasks Smonitor events time for forever >> <<
always @ ‘define “ifdef "else wait # @ packed arrays if-else

[test program blocks persistent events sessssessssnnane: from C /C++ cssssecsesesces,

- clocking domains process control : classes dynamic arrays .
& | mailboxes constrained random values inheritance associative arrays -
. semaphores direct C function calls * strings references :

[assertions dynamic processes :oint globals break .
interfaces 2-state modeling + shortint enum continue .

o | nested hierarchy packed arrays + longint typedef return :
poc’ { unrestricted ports array assignments + shortreal structures do—while .
automatic port connect specialized procedures :+ double unions ¢ o= ="=[|=
enhanced literals enhanced event control + char casting >>= <<= >>>= <<<= :

\ time values and units unique/priority case/if %, void const &= |= A= %= -
Verilog-2001 -

ANSI C style ports standard file VO (* attributes *) .’.' multi dimensional arrays
generate Svalue$plusargs configurations % signed types .
localparam ‘ifndef elsif ‘line memory part selects v, automatic
constant functions @ variable part select ", ** (power operator) -

.

assign ‘include “timescale fork—join 2D memory _ repeat

STUDENTS-HUB.com 1 1

https://students-hub.com

Logic Simulation

= Logic simulator interprets the Verilog (HDL) description
= Produces timing diagrams

= Predicts how the hardware will behave before it is
fabricated

= Simulation allows the detection of functional errors in a
design without having to physically implement the circuit

= Errors detected during the simulation can be corrected
by modifying the appropriate statements in the Verilog
code

= Simulating and verifying a design requires a test bench

= The test bench is also written in Verilog

SSSSSSSSSSSSSSS

12

https://students-hub.com

Logic Synthesis

= Logic synthesis is similar to translating a program
= However, the output of logic synthesis is a digital circuit

= A digital circuit modeled in Verilog can be translated into a list
of components and their interconnections, called netlist

= Synthesis can be used to fabricate an integrated circuit

= Synthesis can also target a Field Programmable Gate Array
(FPGA)

= Logic simulation and synthesis are automated using special
software, called Electronic Design Automation (EDA) tools

SSSSSSSS -HUB.com 13

https://students-hub.com

Verilog Code Structure

= Verilog only has one building block

o Module: modules are connected through their ports
similarly as in VHDL

o Usually there is only one module per file.
o A top level invokes instances of other modules.

o Modules can be specified behaviorally or structurally.

14

SSSSSSSSSSSSSSSS

https://students-hub.com

Verilog Module

SSSSSSSSSSSSSSSS

A digital circuit is described in Verilog as a set of modules
A module is declared using the module keyword

A module is terminated using the endmodule keyword

A module has a name and a list of input and output ports

A module is described by a group of statements

15

https://students-hub.com

Verilog Coding Styles

= Structural

= Dataflow

= Behavioural (best for verification)

SSSSSSSSSSSSSSSS

16

https://students-hub.com

Structural and Dataflow Modeling

= Structural Modeling using module instantiation. It describes
the structure of a circuit with modules at different levels

= Dataflow Modeling using Continuous Assignment

— Used mostly for describing Boolean equations and
combinational logic

— Verilog provides a rich set of operators
— Can describe: adders, comparators, multiplexers, etc.

— Synthesis tool can map a dataflow model into a target
technology

STUDENTS-HUB.com

https://students-hub.com

Behavioral Modeling

Behavioral Modeling using Procedural Blocks and Statements

— Describes what the circuit does at a functional and

algorithmic level

— Encourages designers to rapidly create a prototype

— Can be verified easily with a simulator

— Some procedural statements are synthesizable (Others are

STUDENTS-HUB.com

NOT)

18

https://students-hub.com

Example of a Module in Verilog

// Description of a simple circuit
module simple circuit(input A, B, C, output x, y);

wire w;

gl 3
and g1(w, A, B);) AD Y\ W g
not g2(y, C); , Order if n?t BDO—__/ | X
importan g2
or g3(x, W, y);
o C D— D
endmodule >° y

The input keyword defines the input ports: A, B, C
The output keyword defines the output ports: X, y
The wire keyword defines an internal connection: w
The structure of simple circuit is defined by three gates: and, not, or

Each gate has an optional name, followed by the gate output then inputs

STUDENTS-HUB.com 19

https://students-hub.com

Verilog Syntax

. Keywords: have special meaning in Verilog
o Many keywords: module, input, output, wire, and, or, etc.

o Keywords cannot be used as identifiers
= |dentifiers: are user-defined names for modules, ports, etc.
= Verilog is case-sensitive: A and a are different names

= Comments: can be specified in two ways (similar to C)
o Single-line comments begin with // and terminate at end of line

o Multi-ine comments are enclosed between /* and */

White space: space, tab, newline can be used freely in Verilog

= Operators: operate on variables (similarto C: ~& | ~ + - etc.)

STUDENTS-HUB.com

20

https://students-hub.com

Verilog Operators

Bitwise Operators Arithmetic Operators Relational Operators
~a Bitwise NOT a+b ADD a == Equality

a & b Bitwise AND a - b Subtract a != b Inequality

a | b Bitwise OR -a Negate a < b Lessthan

a ~ b Bitwise XOR a *b Multiply a > b Greaterthan

a ~* b Bitwise XNOR a / b Divide a <= b Lessorequal

a "~ b Sameas~" a % b Remainder a >= b Greater or equal
Reduction Operators Shift Operators Miscellaneous Operators
&a AND all bits a << n Shift Left sel?a:b Conditional
|a OR all bits a >> n Shift Right {a, b} Concatenate

~a XOR all bits
~&a NAND all bits
~|a NOR all bits
~"a XNOR all bits

Reduction operators produce a 1-bit result
Relational operators produce a 1-bit result
{a, b} concatenates the bits of a and b

STUDENTS-HUB.com

21

https://students-hub.com

Bit Vectors in Verilog

= A Bit Vector is multi-bit declaration that uses a single name
= A Bit Vector is specified as a Range [msb:1sb]

= msb is most-significant bit and 1sb is least-significant bit

= Examples:
input [15:0] A; // A is a 16-bit input vector
output [0:15] B; // Bit @ is most-significant bit
wire (3:0] W; // Bit 3 is most-significant bit

= Bitselect: W[1] isbit1 of W
« Part select: A[11:8] is a 4-bit select of A with range [11:8]

= The part select range must be consistent with vector declaration

STUDENTS-HUB.com 22

https://students-hub.com

Reduction Operators

module Reduce
(input [3:0] A, B, output X, Y, Z);
// A, B are input vectors, X, Y, Z are 1-bit outputs

// X = A[3] | A[2] | A[1] | A[e];

assign X = |A;

// Y = B[3] & B[2] & B[1] & B[@];
assign Y = &B;

// Z = X & (B[3] ~ B[2] ~ B[1] ~ B[@]);
assign Z = X & ("B);

endmodule

SSSSSSSS -HUB.com 23

https://students-hub.com

Concatenation Operator { }

module Concatenate
(input [7:0] A, B, output [7:0] X, Y, Z);

// A, B are input vectors, X, Y, Z are output vectors

// X = A is right-shifted 3 bits using { } operator
assign X = {3'b000, A[7:3]};

// Y = A is right-rotated 3 bits using { } operator
assign Y = {A[2:0], A[7:3]};

// Z = selecting and concatenating bits of A and B
assign Z = {A[5:4], B[6:3], A[1:0]};

endmodule

STUDENTS-HUB.com 24

https://students-hub.com

Integer Literals (Constant Values)

= Syntax: [size]['base]value
size (optional) is the number of bits in the value
"base can be: 'b(binary), 'o(octal), 'd(decimal), or 'h(hex)
value can be in binary, octal, decimal, or hexadecimal
= If the "base Is not specified then decimal value
= Examples:
8'b1011_1101 (8-bit binary), 'hA3F@ (16-bit hexadecimal)
16 '056377 (16-bit octal), 32'd999 (32-bit decimal)
= The underscore _can be used to enhance readability of value

= When size is fewer bits than value, upper bits are truncated

SSSSSSSS -HUB.com 25

https://students-hub.com

If Statement

= The if statement is procedural
= Can only be used inside a procedural block
= Syntax:
if (expression) statement
[else statement]
= The else part is optional

A statement can be simple or compound

A compound statement is surrounded by begin ...

= jif statements can be nested

= Can be nested under if or under else part

STUDENTS-HUB.com

end

26

https://students-hub.com

Modeling a 2x1 Multiplexer

// Behavioral Modeling of a Parametric 2x1 Mux
module Mux2 #(parameter n = 1)
(input [n-1:0] A, B, input sel,
output reg [n-1:0] Z);
// Output Z must be of type reg
// Sensitivity list = @(A, B, sel)
always @(A, B, sel) begin

n
if (sel == 0) Z = A; A mmiepi0 |
else Z = B; n Z
B mlmp) |
end
endmodule sel

27

STUDENTS-HUB.com

https://students-hub.com

Case Statement

= The case statement is procedural (used inside always block)
= Syntax:
case (expression)
case _iteml: statement

case_item2: statement

default: statement

endcase

The default case is optional
A statement can be simple or compound
A compound statement is surrounded by begin ... end

28

STUDENTS-HUB.com

https://students-hub.com

Modeling a Mux with a Case Statement

module Mux4 #(parameter n = 1)
(input [n-1:0] A, B, C, D, input [1:0] sel,
output reg [n-1:0] Z);

// @(*) is @(A, B, C, D, sel)
always @(*) begin AJL,O\
case (sel) N
2'boo: Z = A; B) | quy
2'b01: Z = B; o =l Z
2'blo: Z = C; ;
default: Z = D; D wmip) 3
endcase /12
end sel
endmodule

SSSSSSSSSSSSSSSS

29

https://students-hub.com

Conditional Operator

= Syntax:
Boolean expr ? True expression : False expression
If Boolean _expr is true then select True_expression

Else select False Expression

= Examples:

assign max = (a>b)? a : b; // maximum of a and b

assign min = (a>b)? b : a; // minimum of a and b

= Conditional operators can be nested

STUDENTS-HUB.com

30

https://students-hub.com

Basic Gates

= Basic gates: and, nand, or, nor, xor, xnor, not, buf
= Verilog define these gates as keywords
= Each gate has an optional name
= Each gate has an output (listed first) and one or more inputs
= The not and buf gates can have only one input
= Examples:
and gl(x,a,b); // 2-input and gate named gl
or g2(y,a,b,c); // 3-input or gate named g2
nor 53(?,9,b,c,g); // 4-input nor gate named g3

name output inputs
SSSSSSSS -HUB.com 31

https://students-hub.com

Continuous Assignment

» Used in Dataflow coding style.
— assign #4 Out = Inl & In2;

« Keyword assign followed by optional delay declaration

» LHS (target) can be net (scalar or vector) or concatenation
of nets

— NO registers allowed as target for assignment. Only output port or
wire

= Assignment symbol: =
 RHS Is an expression.
 Implicit continuous assignment: wire x = ...;

» Conditional assignment:
— assign Out = Sel ? Inl : InO;
— If Selis 1then Inl is assigned to Out; if Sel is 0 then Out is InO.

STUDENTS-HUB.com 33

https://students-hub.com

Continuous Assignment: Execution

= Continuous assignments are always active.
= The order of the assign statements does not matter

= Concurrency:
— When any of the operands on RHS changes, assignment is
evaluated.
— Several assignments can be executed concurrently.

— Race conditions can occur!
= Two or more assignments, which operate on the same data, read anc
write the data concurrently.
= Result, which might be erroneous, depends on which assignment
does what when.
= Delays specify time between change of operand on RHS and

assignment of resulting value to LHS target.
— assign #4 Out = Inl & In2;

STUDENTS-HUB.com

34

https://students-hub.com

TestBench

= In order to simulate a circuit, it is necessary to apply inputs to

the circuit for the simulator to generate an output response
= A testbench is written to verify the correctness of a DUT
= Atestbench is written as a Verilog module with no ports
= [tinstantiates the DUT
= |t provides inputs to the DUT

» Test benches can be complex and lengthy, depending on the

complexity of the design

SSSSSSSS -HUB.com 35

https://students-hub.com

Example of a Simple TestBench

module Test Full Adder; // No need for Ports
reg a, b, c; // variable inputs
wire sum, cout;// wire outputs
// Instantiate the module to be tested
Full Adder FA (a, b, c, cout, sum);
initial begin // initial block
a=0; b=0; c=0; // at t=0 +time units
#20 a=1; b=1;// at t=20 time units
#20 a=0; b=0; c=1; // at t=40 time units
#20 a=1; c=0;// at t=60 time units
#20 $finish; // at t=80 finish simulation
end // end of initial block
endmodule

SSSSSSSSSSSSSSSS

36

https://students-hub.com

Nets and Variables

Verilog has two major data types:
1. Net data types: are connections between parts of a design
2. Variable data types: can store data values
= The wire is a net data type (physical connection)
— A wire cannot store the value of a procedural assignment
— However, a wire can be driven by continuous assignment
= The reg is a variable data type
— Can store the value of a procedural assignment
— However, cannot be driven by continuous assignment

— Other variable types: integer, time, real, and realtime

STUDENTS-HUB.com

37

https://students-hub.com

Verilog Signals

= Verilog signals:
o hets (used for “connections”, no storage capacity)

o registers (storage capacity, similar to variables in
software programming languages)

= Verilog external signals:

o ports (input, output or inout, port connecting rules)

SSSSSSSSSSSSSSSS

38

https://students-hub.com

Verilog Four-Valued Logic

= Verilog Value Set consists of four basic values:
0 — represents a logic zero, or false condition
1 — represents a logic one, or true condition
X — represents an unknown logic value

Z — represents a high-impedance value
X or X represents an unknown or uninitialized value

Z or Z represents the output of a disabled tri-state buffer

SSSSSSSS -HUB.com 39

https://students-hub.com

The initial Statement

= The initial statement is a procedural block of statements

= The body of the initial statement surrounded by begin-end

= |tis sequential, like a sequential block in a programming language

= Procedural assignments are used inside the initial block

= Procedural assignment statements are executed in sequence
Syntax: #delay variable = expression;

= Procedural assignment statements can be delayed

= The optional #delay indicates that the variable (of reg type)

should be updated after the time delay
SSSSSSSS -HUB.com 40

https://students-hub.com

Running the Simulator

’ a 1 1 | | | =]

’ b] 1 | |

’ C] 1 | |

Q cout St0 1 |
i ¥ sum 51 - |

[«

YO Now 80ns | 10 ns 70 ns 80

jErsor 165 ns] |15|

E A EEEE | ol

Examine the waveforms to verify the correctness of your design
At t = 0 ns, the values of cout and sum are unknown (shown in red)

The cout and sum signals are delayed by 7ns and 6ns, respectively

STUDENTS-HUB.com 41

https://students-hub.com

Modular Design: 4-bit Adder

Uses identical copies of a full adder to build a large adder
= Simple to implement: the cell (iterative block) is a full adder
= Carry-out of cell i becomes carry-into cell (i +1)

= Can be extended to add any number of bits

a; by a, b, a,; b, a, by
| | | | | | | |
LCa | Full | G| Full [(G| Full | 1| Full |
Adder Adder Adder Adder
l l l l
S3 S2 S1 So

SSSSSSSSSSSSSSSS

42

https://students-hub.com

4-bit Adder using Module Instantiation

module Adder4 (input a0, al, a2, a3, bo, bl, b2, b3, co,

output sO,
)5

sl, s2, s3, c4

wire cl1, c2, c3; // Internal wires for the carries
// Instantiate Four Full Adders: FAO, FAl, FA2, FA3
// The ports are matched by position

Full Adder
Full Adder
Full Adder
Full Adder
// Can also

FAO@ (a@, bo, cO, cl, s0);
FA1 (al, bl, c1, c2, sl);
FA2 (a2, b2, c2, c3, s2);
FA3 (a3, b3, c3, c4, s3);

match the ports by name

// Full Adder FA@ (.a(a@), .b(b0), .c(c@), .cout(cl),

.sum(s0));
~&ndmodule

43

https://students-hub.com

Module Instantiation

= Module declarations are like templates

= Module instantiation is like creating an object

= Modules are instantiated inside other modules at different levels
= Module instantiation defines the structure of a digital design

= |t produces module instances at different levels

= The ports of a module instance must match those declared

= The matching of the ports can be done by name or by position

STUDENTS-HUB.com 44

https://students-hub.com

Writing a Test Bench for the 4-bit Adder

module Adder4 TestBench; // No Ports
reg a0, al, a2, a3; // variable inputs
reg bo, bl, b2, b3, cin; // variable inputs
wire s0, sl1, s2, s3, cout; // wire outputs
// Instantiate the module to be tested
Adder4 Add4 (a@,al,a2,a3, bo,bl,b2,b3, cin, s@,sl,s2,s3, cout);
initial begin // initial block
a0=0;al=0;a2=0;a3=0; // at t=0
b0=0;b1=0;b2=0;b3=0;cin=0; // at t=0
#100 al=1;a3=1;b2=1;b3=1; // at t=100
#100 a0=1;al1=0;bl=1;b2=0; // at t=200
#100 a2=1;a3=0;cin=1; // at t=300
#100 $finish; // at t=400 finish simulation
end // end of initial block
endmodule

STUDENTS-HUB.com 45

https://students-hub.com

Behavioural Coding Style

= Behavior:
— Actions a circuit is supposed to perform when it is active.

= Most advanced coding style: flexible and high-level
— closest to programming languages

— allows use of conditional statements, case statements, loops, etc.

Best for verification, but by no means ideal...

= Algorithmic description: Need "variables” similar to PLs!

— Abstraction of data storage elements - register objects:
= reg R; one bit register - default value x before first assignment
= time T; can store/manipulate simulation time
 integer N; by default at least 32 bit - stores values signed
= real R; defaultvalueisO

STUDENTS-HUB.com

46

https://students-hub.com

Behavioural Constructs for Coding

= Conditionals:

1f (expression true) true branch;
else false branch;

= Case:
case ({_,...,_})
pattern : ...;
default : ...;
endcase

= Loops: forever, repeat, while, for

SSSSSSSS -HUB.com 47

https://students-hub.com

Mux421:. Behavioural Coding Example

module mux421 behavioural (Out, In0O, Inl, In2, In3, Sel0, Sell);

output Out;

input In0O, Inl, In2, In3, SelO, Sell;

reg Out;

always @ (Sell or Sel0 or InO or Inl or In2 or In3)
begin

case ({Sell,Sel0})
2'b00 : Out = InO;

2’b01 : Out = Inl;
2’bl0 : Out = In2;
2’bll : Out = In3;

default : Out = 1’bx;
endcase
end
endmodule // mux421 behavioural

STUDENTS-HUB.com 48

https://students-hub.com

Mux421:. Behavioural Coding Example

module mux421 behavioural (Out, In0O, Inl, In2, In3, Sel0, Sell);

output Out;

input In0O, Inl, In2, In3, SelO, Sell;

reg Out;

always @ (Sell,Sel0,In0,Inl,In2,In3) // Verilog 2001 style
begin

case ({Sell,Sel0})
2'b00 : Out = InO;

2’b01 : Out = Inl;
2’bl0 : Out = In2;
2’bll : Out = In3;

default : Out = 1’bx;
endcase
end
endmodule // mux421 behavioural

STUDENTS-HUB.com 49

https://students-hub.com

Behavioural Blocks

= initial and always

— Can’t be nested.

— Block containing several statements must be grouped using:
 begin ... end (sequential)

= initial block:

— Used to initialize variables (registers).
— Executed at (simulation) time 0. Only once!

» always block:

— Starts executing at time 0.

— Contents is executed in infinite loop.
= Means: Execution repeats as long as simulation is running.
— Multiple blocks are all executed concurrently from time O.

STUDENTS-HUB.com

50

https://students-hub.com

Assignment in Behavioural Coding

Assignment in behavioral coding style is procedural:
#5 C = #10 A+B;

= LHS (target) must be a register (reg, integer, real or time) -
not a net, a bit or part of a vector of registers.

* NO assign keyword!

= Must be contained within a behavioral (i.e. initial or
always) block.

= NOT always active!

— Target register value is only changed when procedural assignment is
executed according to sequence contained in block.

= Delays: indicate time that simulator waits from "finding” the
assignment to executing it.

SSSSSSSS -HUB.com 51

https://students-hub.com

Blocking Assignment

(... as opposed to continuous assignment from
dataflow coding style.)

= Sequential initialization assignment.

reg A;
reg [7:0] Vector;
integer Count;

initial

begin
A = 1'b0;
Vector = 8’'b0;
Count = O;

end

SSSSSSSSSSSSSSSS

52

https://students-hub.com

Timing Control Evaluation

/#5 C= A+B;

Assignment delay

1. Find procedural assignment
2. Wait 5 time units

3. Perform A+B

4. Wait 10 time units

5. Assign resultto C

So, what is the difference between:
— #10 Cc = A+B and
- C = #10 A+B?

SSSSSSSSSSSSSSSS

53

https://students-hub.com

Events and Wait

 Events mark changes in nets and registers, e.g.
raising/falling edge of clock.
- @ negedge means from any value to O
- @ posedge means from any value to 1
- @ clk always activates when clock changes

= Walit statement:

—walit (condition) stmt;
 wait (EN) #5 C = A + B;
— waits for ENto be 1 before #5 C = A + B;

 Use wait to block execution by not specifying a
statement!
- wait (EN);

SSSSSSSSSSSSSSSS

54

https://students-hub.com

Sensitivity List

always @ (sensitivity list) <begin> <procedural stments> <end>

always @ (posedge Clk or EN)
begin ... end

always Q@ (Sell,Sel2) // Verilog 2001 style
begin ... end

= Allows to suspend always blocks.

= Block executes and suspends until signal (one or more)
In sensitivity list changes.

= NOTE: or is used to make statement sensitive to
multiple signals or events.

= (Don’t use sensitivity list to express a logical condition!)

= Common mistake:
— Forgetting to add relevant signals to sensitivity list!

STUDENTS-HUB.com 55

https://students-hub.com

Non-blocking Assignments

= Concurrency can be introduced into seqguential
statements.
— Delay is counted down before assignment,
— BUT control is passed to next statement immediately.

= Non-blocking Assignments allow to model multiple
concurrent data transfers after common event.

= A blocking assignment would force sequential execution.

A<= #1 1; B <= #2 0; (non-blocking) Ax 111
B x x 00

Time: 0 1 2 3

A=#11; B = #2 0; (blocking) Ax 111
Bxxx 0

Time: 0 1 2 3

STUDENTS-HUB.com 56

https://students-hub.com

Approaches to Assignment - |l

Race Condition!
reg [7:0] MyReg;

initial

begin /‘42//,
MyReg <= #50 8’'hFF; // pass control, wait, assign
MyReg <= #50 8’'h01;
MyReg <= #50 8’h2F;
MyReg <= #50 8’h00;
#250 $finish;

end

= Sequential with non-blocking assignment (<=)
Time: 0 50 100 150 200 250

MyReg[7:0] XX 99 92 929 929 929

Important when driving input into a DUV in a testbench!

STUDENTS-HUB.com

https://students-hub.com

Approaches to Assignment - |l

reg [7:0] MyReg;
initial
begin
MyReg <= #50 8’'hFF; // pass control, wait, assign
MyReg <= #100 8'hO01;
MyReg <= #150 8'h2F;
MyReg <= #200 8’h00;
#250 $finish;
end

= Sequential with non-blocking assignment (<=)
Time: 0 50 100 150 200 250
MyReg[7:0] XX FF 01 2F 00 00

Important when driving input into a DUV in a testbench!

STUDENTS-HUB.com

https://students-hub.com

Approaches to Assignment - IV

reg [7:0] MyReg;

initial
begin
#50 MyReg = 8'hFF; // wait, assign, pass control
#50 MyReg = 8’'h01;
#50 MyReg = 8'h2F;

#50 MyReg = 8’h00;
#250 $finish;
end

= Sequential with blocking assignment (=)
Time: 0 50 100 150 200 250
MyReg[7:0] XX FF 01 2F 00 00

Important when driving input into a DUV in a testbench!

STUDENTS-HUB.com

https://students-hub.com

Verilog Coding Guidelines

1. When modeling combinational logic, use blocking assignments
2. When modeling sequential logic, use non-blocking assignments

3. When modeling both sequential and combinational logic within

the same always block, use non-blocking assignments

4. Do NOT mix blocking with non-blocking assignments in the same

always block

5. Do NOT make assignments to the same variable from more than

one always block

SSSSSSSS -HUB.com 60

https://students-hub.com

Tasks and Functions

= Both are purely behavioural.
— Can’t define nets inside them.
— Can use logical variables, registers, integers and reals.

= Must be declared within a module.
— Are local to this module.
— To share tasks/functions in several modules, specify declaration
In separate module and use ‘include directive.
= Timing (simulation time)
— Tasks:
= No restriction on use of timing; engineer specifies execution.

— Functions:
= Execute in ZERO sim time units; no timing/event control allowed.

STUDENTS-HUB.com

61

https://students-hub.com

Task Example

task factorial;
output [31:0] £,
input [3:0] n;
integer count; // local variable
begin
f =1;
for (count=n; count>0; count=count-1)
f = f * count;
end
endtask

= Invoketask: < task name > (list of arguments);
— Declaration order determines order of arguments when task is called!

STUDENTS-HUB.com 62

https://students-hub.com

Function Example

function ParityCheck;
input [3:0] Data;
begin
ParityCheck = "Data; // bit-wise xor reduction
end
endfunction

= Result is by default a 1 bit register assigned to implicitly declared
local variable that has same name as function.

= Function calls:
— Are either assigned to a variable, or
— occur in an expression that is assigned to a variable,
— or occur as an argument of another function call.

STUDENTS-HUB.com

63

https://students-hub.com

Comparing Tasks with Functions

Tasks Functions
Timing can be non-zero sim execute in 0 sim time
time
Calling other | no limit; may not call tasks but may call
tasks or may enable functions another function
functions No recursion!
Arguments | any number; at least one input;
any type; no output/inout;
can'’t return result always results in single return value
Purpose modularize code react to some input with single
response;
only combinatorial code;
use as operands in expressions

STUDENTS-HUB.com

64

https://students-hub.com

System Tasks and Functions

SSSSSSSSSSSSSSSS

More than 100 Verilog system tasks/functions.

Can be used in any module without explicit
iInclude directive.

Syntax: $< keyword >

Most important tasks for verification:
- $display, Smonitor

— $time, S$stop, $finish

— (Also with files: $fopen, S$fdisplay)

65

https://students-hub.com

Summary

* Verilog HDL IEEE Standard 1364-2001

— Signals: internal and external (ports)

— Different coding styles:
= structural
= dataflow
= behavioural

= SystemVerilog builds on IEEE 1364-2005
 HDLs: Connectivity, Time and Concurrency

SSSSSSSSSSSSSSSS

66

https://students-hub.com

