
 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

79

Binary Search Trees (BST)
 Problem: searching in binary tree takes O(n).
 Solution: forming a binary search tree.
 In a binary search tree for every node , X, in the tree, the values of all the items in its left subtree are

smaller than the item in X, and the values of all the items in its right subtree are larger (or equal if
duplication is allowed) than the item in X.

Binary Tree

Binary Search Tree

 Every node in a binary search tree is the root of a binary search tree.

 Search for an item:

Example: find(52) , find(39) , find(35)
public TNode find(T data) { return find(data, root); }
public TNode find(T data, TNode node) {
 if (node!= null) {
 int comp = node.data.compareTo(data);
 if (comp == 0)
 return node;
 else if (comp > 0 && node.hasLeft()) return find(data, node.left);
 else if (comp < 0 && node.hasRight()) return find(data, node.right);
 }
 return null;
}

Efficiency: Searching a binary search tree of height h is O(h)
However, to make searching a binary search tree as efficient as possible, tree must be as short as possible.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

80

Finding Max and Min Values:

 The find Min operation is performed by following left nodes as long as there is a left child.
 The find Max operation is similar.

public TNode largest() { return largest(root); }
public TNode<T> largest(TNode node) {
 if(node!= null){
 if(!node.hasRight())
 return (node);
 return largest(node.right);
 }
 return null;
}

public TNode smallest() { return smallest(root); }
public TNode<T> smallest(TNode node) {
 if(node!= null){
 if(!node.hasLeft())
 return (node);
 return smallest(node.left);
 }
 return null;
}

Tree Height:
public int height() { return height(root); }
public int height(TNode node) {
 if (node == null) return 0;
 if (node.isLeaf()) return 1;
 int left = 0;
 int right = 0;
 if (node.hasLeft())
 left = height(node.left);
 if (node.hasRight())
 right = height(node.right);
 return (left > right) ? (left + 1) : (right + 1);
}

H.W. Implement Tree Size

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

81

Insert in Binary Search Tree:
Example: insert(63)

public void insert(T data) {
 if (isEmpty())
 root = new TNode(data);
 else
 insert(data, root);
}
public void insert(T data, TNode node) {
 if (data.compareTo((T) node.data) >= 0) { // insert into right subtree
 if (!node.hasRight())
 node.right = new TNode(data);
 else
 insert(data, node.right);
 } else { // insert into left subtree
 if (!node.hasLeft())
 node.left = new TNode(data);
 else
 insert(data, node.left);
 }
}

Tree Shape:

Tree shape depends on order of insertion.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

82

Deleting a Node:
Case 1: Node to be deleted is a leaf. Two possible configurations of a leaf node N:

Being a left child or a right child:

Example: delete(34)

public TNode delete(T data) {
 TNode current = root;
 TNode parent = root;
 boolean isLeftChild = false;

 if (isEmpty()) return null; // tree is empty
 while (current != null && !current.data.equals(data)) {
 parent = current;
 if (data.compareTo((T)current.data) < 0) {
 current = current.left;
 isLeftChild = true;
 } else {
 current = current.right;
 isLeftChild = false;
 }
 }
 if (current == null) return null; // node to be deleted not found

 // case 1: node is a leaf
 if (!current.hasLeft() && !current.hasRight()) {
 if (current == root) // tree has one node
 root = null;
 else {
 if (isLeftChild) parent.left = null;
 else parent.right = null;
 }
 }

 // other cases
 return current;
}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

83

Case 2: If a node has one child, it can be removed by having its parent bypass it.

Example: delete (72)

Note: The root is a special case because it does not have a parent.

// Case 2 broken down further into 2 separate cases
else if (current.hasLeft()) { // current has left child only
 if (current == root) {
 root = current.left;
 } else if (isLeftChild) {
 parent.left = current.left;
 } else {
 parent.right = current.left;
 }
} else if (current.hasRight()) { // current has right child only
 if (current == root) {
 root = current.right;
 } else if (isLeftChild) {
 parent.left = current.right;
 } else {
 parent.right = current.right;
 }
}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

84

Case 3:
o Two possible configurations of a node N that has two children:

o A node with two children is replaced by using the smallest item in the right subtree
(Successor).

Example: delete(33)

What if node 34 has a right child (e.g. 36)?

 

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

85

// case 3: node to be deleted has 2 children
else {
 Node successor = getSuccessor(current);
 if (current == root)
 root = successor;
 else if (isLeftChild) {
 parent.left = successor;
 } else {
 parent.right = successor;
 }
 successor.left = current.left;
}

private Node getSuccessor(Node node) {
 Node parentOfSuccessor = node;
 Node successor = node;
 Node current = node.right;
 while (current != null) {
 parentOfSuccessor = successor;
 successor = current;
 current = current.left;
 }
 if (successor != node.right) { // fix successor connections
 parentOfSuccessor.left = successor.right;
 successor.right = node.right;
 }
 return successor;
}

Soft Delete (lazy deletion):

When an element is to be deleted, it is left in the tree and simply marked as being deleted.
 If a deleted item is reinserted, the overhead of allocating a new cell is avoided.

Efficiency of Operations:

• For tree of height h
 The operations add, delete, and find are O(h)

• If tree of n nodes has height h = n
 These operations are O(n)

• Shortest tree is complete
 Results in these operations being O(log n)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

