E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Binary Search Trees (BST)

e Problem: searching in binary tree takes O(n).

e Solution: forming a binary search tree.

e Ina binary search tree for every node , X, in the tree, the values of all the items in its left subtree are
smaller than the item in X, and the values of all the items in its right subtree are larger (or equal if
duplication is allowed) than the item in X.

Binary Tree Binary Search Tree

e Every node in a binary search tree is the root of a binary search tree.

e Search for an item:

Example: find(52), find(39) , find(35)
public TNode find(T data) { return find(data, root); }
public TNode find(T data, TNode node) {

if (node!= null) {
int comp = node.data.compareTo(data);

if (comp ==0)
return node;
else if (comp > 0 && node.haslLeft()) return find(data, node.left);
else if (comp < 0 && node.hasRight()) return find(data, node.right);
}
return null;

}

Efficiency: Searching a binary search tree of height h is O(h)
However, to make searching a binary search tree as efficient as possible, tree must be as short as possible.

79
7

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note

2020/2021

Finding Max and Min Values:

Tree Height:

Prepared by: Dr. Mamoun Nawahdah

| ARGEST

The find Min operation is performed by following left nodes as long as there is a left child.
The find Max operation is similar.

public TNode largest() { return largest(root); }
public TNode<T> largest(TNode node) {
if(node!= null){
if(Inode.hasRight())
return (node);
return largest(node.right);
}
return null;

}

public TNode smallest() { return smallest(root);
public TNode<T> smallest(TNode node) {
if(node!= null){
if(Inode.hasLeft())
return (node);
return smallest(node.left);

}

return null;

}

public int height() { return height(root); }
public int height(TNode node) {
if (node == null) return 0;
if (node.isLeaf()) return 1;
int left = 0;
int right = 0;
if (node.hasLeft())
left = height(node.left);
if (node.hasRight())
right = height(node.right);
return (left > right) ? (left + 1) : (right + 1);

STUDENTS-HUB.com

H.W. Implement Tree Size

80

Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Insert in Binary Search Tree:
Example: insert(63)

Insert (63)

public void insert(T data) {
if (isEmpty())
root = new TNode(data);
else
insert(data, root);
}
public void insert(T data, TNode node) {
if (data.compareTo((T) node.data) >=0) { // insert into right subtree
if (Inode.hasRight())
node.right = new TNode(data);
else
insert(data, node.right);
}else { // insert into left subtree
if (Inode.hasLeft())
node.left = new TNode(data);
else
insert(data, node.left);

Tree Shape:
Tree shape depends on order of insertion.

best case m typical case worst case

@ (S)
(W) (E) (R) (X)

81

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Deleting a Node:

Case 1: Node to be deleted is a leaf. Two possible configurations of a leaf node N:
Being a left child or a right child:
Before Alter

(a) (b)

—>

Node P

Node N Naode N

Example: delete(34)
Delete (34)

Case 1 : Node to be deleted is a leaf.

public TNode delete(T data) {
TNode current = root;
TNode parent = root;
boolean isLeftChild = false;

if (isEmpty()) return null; //tree is empty
while (current = null && !current.data.equals(data)) {
parent = current;
if (data.compareTo((T)current.data) < 0) {
current = current.left;
isLeftChild = true;
}else {
current = current.right;
isLeftChild = false;
}
}

if (current == null) return null; // node to be deleted not found

// case 1: node is a leaf
if (!current.hasLeft() && Icurrent.hasRight()) {
if (current == root) // tree has one node

root = null;

else {
if (isLeftChild) parent.left = null;
else parent.right = null;

}
}

// other cases
return current;

82

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Case 2: If a node has one child, it can be removed by having its parent bypass it.

Two possible configurations before removal After removal

Node P

Case 2 : Node to be deleted has one child.
Note: The root is a special case because it does not have a parent.

// Case 2 broken down further into 2 separate cases
else if (current.hasLeft()) { // current has left child only
if (current == root) {
root = current.left;
} else if (isLeftChild) {
parent.left = current.left;
}else {
parent.right = current.left;
1
} else if (current.hasRight()) { // current has right child only
if (current == root) {
root = current.right;
} else if (isLeftChild) {
parent.left = current.right;
}else {
parent.right = current.right;

}

83

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Case 3:
o Two possible configurations of a node N that has two children:

@) / (®) /
5! Node PQ(}(G Node PD\
);e Node Ni« ﬁ N;La\

%;R gl;l% S’ Node C, /G Node c?\

o A node with two children is replaced by using the smallest item in the right subtree

(Successor).
Example: delete(33)

Delete (33) Delete (33)

Case 3 : Node to be deleted has two children.

Delete (33)

Case 3 : Node to be deleted has two children,™

What if node 34 has a right child (e.g. 36)?

Delete (33)

84

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note

2020/2021

Prepared by: Dr. Mamoun Nawahdah

// case 3: node to be deleted has 2 children
else {
Node successor = getSuccessor(current);
if (current == root)
root = successor;
else if (isLeftChild) {
parent.left = successor;
}else {
parent.right = successor;

}

successor.left = current.left;

}

}

}

private Node getSuccessor(Node node) {

Node parentOfSuccessor = node;

Node successor = node;

Node current = node.right;

while (current = null) {
parentOfSuccessor = successor;
successor = current;
current = current.left;

if (successor != node.right) { // fix successor connections
parentOfSuccessor.left = successor.right;

successor.right = node.right;

return successor;

Soft Delete (lazy deletion):
When an element is to be deleted, it is left in the tree and simply marked as being deleted.
e [f a deleted item is reinserted, the overhead of allocating a new cell is avoided.

Efficiency of Operations:

* Fortree of height h

= The operations add, delete, and find are O(h)
* If tree of n nodes has height h=n

= These operations are O(n)
* Shortest tree is complete

= Results in these operations being O(log n)

STUDENTS-HUB.com

85

Uploaded By: Jibreel Bornat

